ALGEBRA- I(Introduction)

G. Kalaimurugan

Department of Mathematics
Thiruvalluvar University, Vellore -632 115.

March 9, 2020
(1) Introduction to Groups

- Basic axioms
(2) Dihedral groups
(3) Homomorphisms and Isomorphisms

4 Group Actions
(5) Subgroups
(6) Centralizers and Normalizer, Stabilizers and Kernels
(7) Cyclic groups and Cyclic subgroups of a group
(8) Subgroups generated by subsets of a group

Definition

Definition

(1) A binary operation \star on a set G is a function $\star: G \times G \longrightarrow G$. For any $a, b \in G$ we shall write $a \star b$ for $\star(a, b)$

Definition

(1) A binary operation \star on a set G is a function $\star: G \times G \longrightarrow G$. For any $a, b \in G$ we shall write $a \star b$ for $\star(a, b)$
(2) A binary operation \star on a set G is associative if for all $a, b, c \in G$ we have $a \star(b \star c)=(a \star b) \star c$.

Definition

(1) A binary operation \star on a set G is a function $\star: G \times G \longrightarrow G$. For any $a, b \in G$ we shall write $a \star b$ for $\star(a, b)$
(2) A binary operation \star on a set G is associative if for all $a, b, c \in G$ we have $a \star(b \star c)=(a \star b) \star c$.
(3) If \star is a binary operation on a set G we say elements a and b of G commute if $a \star b=b \star a$. We say $\star($ or $G)$ is commutative if for all $a, b \in G, a \star b=b \star a$.

Definition

Definition

(1) A group is an ordered pair (G, \star) where G is a set and \star is a binary operation on G satisfying the following axioms:

Definition

(1) A group is an ordered pair (G, \star) where G is a set and \star is a binary operation on G satisfying the following axioms:

- $(a \star b) \star c=a \star(b \star c)$, for all $a, b, c \in G$, i.e., \star is associative,

Definition

(1) A group is an ordered pair (G, \star) where G is a set and \star is a binary operation on G satisfying the following axioms:

- $(a \star b) \star c=a \star(b \star c)$, for all $a, b, c \in G$, i.e., \star is associative,
- there exists an element e in G, called an identity of G, such that for all $a \in G$ we have $a \star e=e \star a=a$,

Definition

(1) A group is an ordered pair (G, \star) where G is a set and \star is a binary operation on G satisfying the following axioms:

- $(a \star b) \star c=a \star(b \star c)$, for all $a, b, c \in G$, i.e., \star is associative,
- there exists an element e in G, called an identity of G, such that for all $a \in G$ we have $a \star e=e \star a=a$,
- for each $a \in G$ there is an element a^{-1} of G, called an inverse of a, such that $a \star a^{-1}=a^{-1} \star a=e$

Definition

(1) A group is an ordered pair (G, \star) where G is a set and \star is a binary operation on G satisfying the following axioms:

- $(a \star b) \star c=a \star(b \star c)$, for all $a, b, c \in G$, i.e., \star is associative,
- there exists an element e in G, called an identity of G, such that for all $a \in G$ we have $a \star e=e \star a=a$,
- for each $a \in G$ there is an element a^{-1} of G, called an inverse of a, such that $a \star a^{-1}=a^{-1} \star a=e$
(2) The group (G, \star) i s called abelian (or commutative) if $a \star b=b \star a$ for all $a, b \in G$.

Proposition

If G is a group under the operation \star, then

Proposition

If G is a group under the operation \star, then
(-) the identity of G is unique

Proposition

If G is a group under the operation \star, then
(1) the identity of G is unique
(2) for each $a \in G, a^{-1}$ is uniquely determined

Proposition

If G is a group under the operation \star, then
(1) the identity of G is unique
(2) for each $a \in G, a^{-1}$ is uniquely determined
(3) $\left(a^{-1}\right)^{-1}=a$ for all $a \in G$

Proposition

If G is a group under the operation \star, then
(1) the identity of G is unique
(2) for each $a \in G, a^{-1}$ is uniquely determined
(3) $\left(a^{-1}\right)^{-1}=a$ for all $a \in G$
(9) $(a \star b)^{-1}=\left(b^{-1}\right) \star\left(a^{-1}\right)$

Proposition

If G is a group under the operation \star, then
(1) the identity of G is unique
(2) for each $a \in G, a^{-1}$ is uniquely determined
(3) $\left(a^{-1}\right)^{-1}=a$ for all $a \in G$
(9) $(a \star b)^{-1}=\left(b^{-1}\right) \star\left(a^{-1}\right)$
(5) for any $a_{1}, a_{2}, \ldots, a_{n} \in G$ the value of $a_{1} \star a_{2} \star \ldots \star a_{n}$ is independent of how the expression is bracketed (this is called the generalized associative law).

Definition

For each $n \in \mathbb{Z}^{+}, n \geq 3$ let $D_{2 n}$ be the set of symmetries of a regular n-gon, where a symmetry is any rigid motion of the n-gon which can be effected by taking a copy of the n-gon, moving this copy in any fashion in 3-space and then placing the copy back on the original n-gon so it exactly covers it.

A presentation for the dihedral group $D_{2 n}$ (using the generators and relations) is then $D_{2 n}=\left\langle r, s \mid r^{n}=s^{2}=1, r s=s r^{-1}\right\rangle$.

Definition

For each $n \in \mathbb{Z}^{+}, n \geq 3$ let $D_{2 n}$ be the set of symmetries of a regular n-gon, where a symmetry is any rigid motion of the n-gon which can be effected by taking a copy of the n-gon, moving this copy in any fashion in 3-space and then placing the copy back on the original n-gon so it exactly covers it.

A presentation for the dihedral group $D_{2 n}$ (using the generators and relations) is then
$D_{2 n}=\left\langle r, s \mid r^{n}=s^{2}=1, r s=s r^{-1}\right\rangle$.

Remark

Definition

For each $n \in \mathbb{Z}^{+}, n \geq 3$ let $D_{2 n}$ be the set of symmetries of a regular n-gon, where a symmetry is any rigid motion of the n-gon which can be effected by taking a copy of the n-gon, moving this copy in any fashion in 3-space and then placing the copy back on the original n-gon so it exactly covers it.

A presentation for the dihedral group $D_{2 n}$ (using the generators and relations) is then
$D_{2 n}=\left\langle r, s \mid r^{n}=s^{2}=1, r s=s r^{-1}\right\rangle$.

Remark

- $1, r, r^{2}, \ldots, r^{n-1}$ are all distinct and $r^{n}=1$, so $|r|=n$

Definition

For each $n \in \mathbb{Z}^{+}, n \geq 3$ let $D_{2 n}$ be the set of symmetries of a regular n-gon, where a symmetry is any rigid motion of the n-gon which can be effected by taking a copy of the n-gon, moving this copy in any fashion in 3-space and then placing the copy back on the original n-gon so it exactly covers it.

A presentation for the dihedral group $D_{2 n}$ (using the generators and relations) is then
$D_{2 n}=\left\langle r, s \mid r^{n}=s^{2}=1, r s=s r^{-1}\right\rangle$.

Remark

- $1, r, r^{2}, \ldots, r^{n-1}$ are all distinct and $r^{n}=1$, so $|r|=n$
- $|s|=2$.

Definition

For each $n \in \mathbb{Z}^{+}, n \geq 3$ let $D_{2 n}$ be the set of symmetries of a regular n-gon, where a symmetry is any rigid motion of the n-gon which can be effected by taking a copy of the n-gon, moving this copy in any fashion in 3-space and then placing the copy back on the original n-gon so it exactly covers it.

A presentation for the dihedral group $D_{2 n}$ (using the generators and relations) is then
$D_{2 n}=\left\langle r, s \mid r^{n}=s^{2}=1, r s=s r^{-1}\right\rangle$.

Remark

- $1, r, r^{2}, \ldots, r^{n-1}$ are all distinct and $r^{n}=1$, so $|r|=n$
- $|s|=2$.
- $s \neq r^{i}$ for any i

Definition

For each $n \in \mathbb{Z}^{+}, n \geq 3$ let $D_{2 n}$ be the set of symmetries of a regular n-gon, where a symmetry is any rigid motion of the n-gon which can be effected by taking a copy of the n-gon, moving this copy in any fashion in 3-space and then placing the copy back on the original n-gon so it exactly covers it.

A presentation for the dihedral group $D_{2 n}$ (using the generators and relations) is then
$D_{2 n}=\left\langle r, s \mid r^{n}=s^{2}=1, r s=s r^{-1}\right\rangle$.

Remark

- $1, r, r^{2}, \ldots, r^{n-1}$ are all distinct and $r^{n}=1$, so $|r|=n$
- $|s|=2$.
- $s \neq r^{i}$ for any i
- $s r^{i} \neq s r^{j}$, for all $0 \leq i, j \leq n-1$ with $i \neq j$, so

$$
D_{2 n}=\left\{1, r, r^{2}, \ldots, r^{n-1}, s, s r, \ldots, s r^{n-1}\right\}
$$

Definition

For each $n \in \mathbb{Z}^{+}, n \geq 3$ let $D_{2 n}$ be the set of symmetries of a regular n-gon, where a symmetry is any rigid motion of the n-gon which can be effected by taking a copy of the n-gon, moving this copy in any fashion in 3-space and then placing the copy back on the original n-gon so it exactly covers it.

A presentation for the dihedral group $D_{2 n}$ (using the generators and relations) is then
$D_{2 n}=\left\langle r, s \mid r^{n}=s^{2}=1, r s=s r^{-1}\right\rangle$.

Remark

- $1, r, r^{2}, \ldots, r^{n-1}$ are all distinct and $r^{n}=1$, so $|r|=n$
- $|s|=2$.
- $s \neq r^{i}$ for any i
- $s r^{i} \neq s r^{j}$, for all $0 \leq i, j \leq n-1$ with $i \neq j$, so

$$
D_{2 n}=\left\{1, r, r^{2}, \ldots, r^{n-1}, s, s r, \ldots, s r^{n-1}\right\}
$$

- $r^{i} s=s r^{-i}$, for all $0 \leq i \leq n$.

Problem

Compute the order of each of the elements in the following groups: (a) D_{6} (b) D_{8} (c) D_{10}.

Problem

Compute the order of each of the elements in the following groups: (a) D_{6} (b) D_{8} (c) D_{10}.

Solution

Recall that every element of $D_{2 n}$ can be represented uniquely as $s^{i} r^{j}$ for some $i=0,1$ and $0 \leq j<n$. Moreover, $r^{i} s=s r^{-i}$ for all $0 \leq i \leq n$. From this we deduce that $\left(s r^{i}\right)\left(s r^{i}\right)=s s r^{-i} r^{i}=1$, so that $s r^{i}$ has order 2 for $0 \leq i \leq n$ (a) $D_{6}=\left\{1, r, r^{2}, s, s r, s r^{2}\right\}$, Let the order of an element α is denoted by $|\alpha|$. Then $|1|=1,|r|=3,\left|r^{2}\right|=3,|s|=|s r|=\left|s r^{2}\right|=2$. (b) $\ln D_{8}$, $|1|=1,|r|=4,\left|r^{2}\right|=2,\left|r^{3}\right|=4,|s|=|s r|=\left|s r^{2}\right|=\left|s r^{3}\right|=2$. (c) $\ln D_{10}$, $|1|=1,|r|=\left|r^{2}\right|=\left|r^{3}\right|=\left|r^{4}\right|=5,|s|=|s r|=\left|s r^{2}\right|=\left|s r^{3}\right|=\left|s r^{4}\right|=2$.

Problem

Use the generators and relations above to show that if x is any element of $D_{2 n}$ which is not a power of r, then $r x=x r^{-1}$.

Problem

Use the generators and relations above to show that if x is any element of $D_{2 n}$ which is not a power of r, then $r x=x r^{-1}$.

Solution

Every element $x \in D_{2 n}$ is of the form $x=s^{i} r^{j}$ where $i=0,1$ and $0 \leq j<n$. If $i=0$ we have that x is a power of r; thus $x=s r^{j}$ for some $0 \leq j<n$. Hence $r x=r s r^{j}=s r^{-1} r^{j}=s r^{j} r^{-1}=x r^{-1}$.

Problem

Use the generators and relations above to show that if x is any element of $D_{2 n}$ which is not a power of r, then $r x=x r^{-1}$.

Solution

Every element $x \in D_{2 n}$ is of the form $x=s^{i} r^{j}$ where $i=0,1$ and $0 \leq j<n$. If $i=0$ we have that x is a power of r; thus $x=s r^{j}$ for some $0 \leq j<n$. Hence
$r x=r s r^{j}=s r^{-1} r^{j}=s r^{j} r^{-1}=x r^{-1}$.

Problem

Let x and y be elements of order 2 in any group G. Prove that if $t=x y$ then $t x=x t^{-1}$ (so that if $n=|x y|<\infty$ then x, t satisfy the same relations in G as s, r do in $D_{2 n}$).

Problem

Use the generators and relations above to show that if x is any element of $D_{2 n}$ which is not a power of r, then $r x=x r^{-1}$.

Solution

Every element $x \in D_{2 n}$ is of the form $x=s^{i} r^{j}$ where $i=0,1$ and $0 \leq j<n$. If $i=0$ we have that x is a power of r; thus $x=s r^{j}$ for some $0 \leq j<n$. Hence $r x=r s r^{j}=s r^{-1} r^{j}=s r^{j} r^{-1}=x r^{-1}$.

Problem

Let x and y be elements of order 2 in any group G. Prove that if $t=x y$ then $t x=x t^{-1}$ (so that if $n=|x y|<\infty$ then x, t satisfy the same relations in G as s, r do in $D_{2 n}$).

Solution

We have $x t^{-1}=x(x y)^{-1}=x y^{-1} x^{-1}=x y x=t x$ since x and y have order 2 .

Problem

Find the order of the cyclic subgroup of $D_{2 n}$ generated by r.

Problem

Find the order of the cyclic subgroup of $D_{2 n}$ generated by r.

Solution

We know that $|r|=n$. Thus, the elements of subgroup A are precisely $1, r, r^{2}, \ldots, r^{n-1}$; thus $|A|=n$

Definition

Let (G, \star) and (H, \diamond) be groups. A map $\phi: G \rightarrow H$ such that $\phi(x \star y)=\phi(x) \diamond \phi(y)$ for all $x, y \in G$, is called a homomorphism.

Definition

Let (G, \star) and (H, \diamond) be groups. A map $\phi: G \rightarrow H$ such that $\phi(x \star y)=\phi(x) \diamond \phi(y)$ for all $x, y \in G$, is called a homomorphism.

Definition

The map $\varphi: G \rightarrow H$ is called an isomorphism and G and H are said to be isomorphic or of the same isomorphism type, written $G \cong H$, if

Definition

Let (G, \star) and (H, \diamond) be groups. A map $\phi: G \rightarrow H$ such that $\phi(x \star y)=\phi(x) \diamond \phi(y)$ for all $x, y \in G$, is called a homomorphism.

Definition

The map $\varphi: G \rightarrow H$ is called an isomorphism and G and H are said to be isomorphic or of the same isomorphism type, written $G \cong H$, if
(1) φ is a homomorphism (i.e., $\varphi(x y)=\varphi(x) \varphi(y)$), and

Definition

Let (G, \star) and (H, \diamond) be groups. A map $\phi: G \rightarrow H$ such that $\phi(x \star y)=\phi(x) \diamond \phi(y)$ for all $x, y \in G$, is called a homomorphism.

Definition

The map $\varphi: G \rightarrow H$ is called an isomorphism and G and H are said to be isomorphic or of the same isomorphism type, written $G \cong H$, if
(1) φ is a homomorphism (i.e., $\varphi(x y)=\varphi(x) \varphi(y)$), and
(2) φ is a bijection.

Let G and H be groups. Solve the following problems.

Problem

Let $\varphi: G \rightarrow H$ be a homomorphism. (a) Prove that $\varphi(x n)=\varphi(x) n$ for all $n \in \mathbb{Z}^{+}$. (b)
Do part (a) for $n=-1$ and deduce that $\varphi(x n)=\varphi(x) n$ for all $n \in \mathbb{Z}$.

Let G and H be groups. Solve the following problems.

Problem

Let $\varphi: G \rightarrow H$ be a homomorphism. (a) Prove that $\varphi(x n)=\varphi(x) n$ for all $n \in \mathbb{Z}^{+}$. (b)
Do part (a) for $n=-1$ and deduce that $\varphi(x n)=\varphi(x) n$ for all $n \in \mathbb{Z}$.

Solution

(a) We proceed by induction on n. For the base case, $\varphi\left(x^{1}\right)=\varphi(x)=\varphi(x)^{1}$. Suppose the statement holds for some $n \in \mathbb{Z}^{+}$; then $\varphi\left(x^{n+1}\right)=\varphi\left(x^{n} x\right)=\varphi\left(x^{n}\right) \varphi(x)=\varphi(x)^{n} \varphi(x)=\varphi(x)^{n+1}$, so the statement holds for $n+1$. By induction, $\varphi\left(x^{n}\right)=\varphi(x)^{n}$ forall $n \in \mathbb{Z}^{+}$.
(b)First, note that $\varphi(x)=\varphi\left(1_{G} \cdot x\right)=\varphi\left(1_{G}\right) \cdot \varphi(x)$. By right cancellation, we have $\varphi\left(1_{G}\right)=1_{H}$. Thus $\varphi\left(x^{0}\right)=\varphi(x)^{0}$. Moreover, $\varphi(x) \varphi\left(x^{-1}\right)=\varphi\left(x x^{-1}\right)=\varphi(1)=1$; thus by the uniqueness of inverses, $\varphi\left(x^{-1}\right)=\varphi(x)^{-1}$. Now suppose n is a negative integer. Then $\varphi\left(x^{n}\right)=\varphi\left(\left(x^{-n}\right)^{-1}\right)=\varphi\left(x^{-n}\right)^{-1}=\left(\varphi(x)^{-n}\right)^{-1}=\varphi(x)^{n}$. Thus $\varphi\left(x^{n}\right)=\varphi(x)^{n}$ for all $x \in G$ and $n \in \mathbb{Z}$.

Problem

If $\varphi: G \rightarrow H$ is an isomorphism, prove that G is abelian if and only if H is abelian.

Problem

If $\varphi: G \rightarrow H$ is an isomorphism, prove that G is abelian if and only if H is abelian.

Solution

Let $\varphi: G \rightarrow H$ be a group isomorphism.
(\Rightarrow) Suppose G is abelian, and let $h_{1}, h_{2} \in H$. Since φ is surjective, there exist $g_{1}, g_{2} \in G$ such that $\varphi\left(g_{1}\right)=h_{1}$ and $\varphi\left(g_{2}\right)=h_{2}$. Now we have $h_{1} h_{2}=\varphi\left(g_{1}\right) \varphi\left(g_{2}\right)=\varphi\left(g_{1} g_{2}\right)=\varphi\left(g_{2} g_{1}\right)=\varphi\left(g_{2}\right) \varphi\left(g_{1}\right)=h_{2} h_{1}$. Thus h_{1} and h_{2} commute; since $h_{1}, h_{2} \in H$ were arbitrary, H is abelian.
(\Leftarrow) Suppose H is abelian, and let $g_{1}, g_{2} \in G$. Then we have $\varphi\left(g_{1} g_{2}\right)=\varphi\left(g_{1}\right) \varphi\left(g_{2}\right)=\varphi\left(g_{2}\right) \varphi\left(g_{1}\right)=\varphi\left(g_{2} g_{1}\right)$. Since φ is injective, we have $g_{1} g_{2}=g_{2} g_{1}$. Since $g_{1}, g_{2} \in G$ were arbitrary, G is abelian.

Problem

Prove that the additive groups \mathbb{R} and \mathbb{Q} are not isomorphic.

Problem

Prove that the additive groups \mathbb{R} and \mathbb{Q} are not isomorphic.

Solution

We know that no bijection $\mathbb{Q} \rightarrow \mathbb{R}$ exists, so no such isomorphism exists.

Problem

Prove that the additive groups \mathbb{R} and \mathbb{Q} are not isomorphic.

Solution

We know that no bijection $\mathbb{Q} \rightarrow \mathbb{R}$ exists, so no such isomorphism exists.

Problem

Define a map $\pi: \mathbb{R}^{2} \rightarrow \mathbb{R}$ by $\pi((x, y))=x$. Prove that π is a homomorphism and find the kernel of π.

Problem

Prove that the additive groups \mathbb{R} and \mathbb{Q} are not isomorphic.

Solution

We know that no bijection $\mathbb{Q} \rightarrow \mathbb{R}$ exists, so no such isomorphism exists.

Problem

Define a map $\pi: \mathbb{R}^{2} \rightarrow \mathbb{R}$ by $\pi((x, y))=x$. Prove that π is a homomorphism and find the kernel of π.

Solution

To show that π is a homomorphism, let $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in \mathbb{R}^{2}$. Then $\pi\left(\left(x_{1}, y_{1}\right) \cdot\left(x_{2}, y_{2}\right)\right)=\pi\left(\left(x_{1} x_{2}, y_{1} y_{2}\right)\right)=x_{1} x_{2}=\pi\left(\left(x_{1}, y_{1}\right)\right) \cdot \pi\left(\left(x_{2}, y_{2}\right)\right)$.
Now we claim that ker $\pi=0 \times \mathbb{R} .(\subseteq) I f(x, y) \in$ ker π then we have $x=\pi((x, y))=0$.
Thus $(x, y) \in 0 \times \mathbb{R}$. (?) If $(x, y) \in 0 \times \mathbb{R}$, we have $x=0$ and thus $\pi((x, y))=0$. Hence $(x, y) \in \operatorname{ker} \pi$.

Problem

Let G be any group. Prove that the map from G to itself defined by $g \mapsto g^{-1}$ is a homomorphism if and only if G is abelian.

Problem

Let G be any group. Prove that the map from G to itself defined by $g \mapsto g^{-1}$ is a homomorphism if and only if G is abelian.

Solution

(\Rightarrow) Suppose G is abelian. Then $\varphi(a b)=(a b)^{-1}=b^{-1} a^{-1}=a^{-1} b^{-1}=\varphi(a) \varphi(b)$, so that φ is a homomorphism.
(\Leftarrow) Suppose φ is a homomorphism, and let $a, b \in G$. Then
$a b=\left(b^{-1} a^{-1}\right)^{-1}=\varphi\left(b^{-1} a^{-1}\right)=\varphi\left(b^{-1}\right) \varphi\left(a^{-1}\right)=\left(b^{-1}\right)^{-1}\left(a^{-1}\right)^{-1}=b a$, so that G is abelian.

Problem

Let G be any group. Prove that the map from G to itself defined by $g \mapsto g^{-1}$ is a homomorphism if and only if G is abelian.

Solution

(\Rightarrow) Suppose G is abelian. Then $\varphi(a b)=(a b)^{-1}=b^{-1} a^{-1}=a^{-1} b^{-1}=\varphi(a) \varphi(b)$, so that φ is a homomorphism.
(\Leftarrow) Suppose φ is a homomorphism, and let $a, b \in G$. Then
$a b=\left(b^{-1} a^{-1}\right)^{-1}=\varphi\left(b^{-1} a^{-1}\right)=\varphi\left(b^{-1}\right) \varphi\left(a^{-1}\right)=\left(b^{-1}\right)^{-1}\left(a^{-1}\right)^{-1}=b a$, so that G is abelian.

Problem

Let G be any group. Prove that the map from G to itself defined by $g \mapsto g^{2}$ is a homomorphism if and only if G is abelian.

Problem

Let G be any group. Prove that the map from G to itself defined by $g \mapsto g^{-1}$ is a homomorphism if and only if G is abelian.

Solution

(\Rightarrow) Suppose G is abelian. Then $\varphi(a b)=(a b)^{-1}=b^{-1} a^{-1}=a^{-1} b^{-1}=\varphi(a) \varphi(b)$, so that φ is a homomorphism.
(\Leftarrow) Suppose φ is a homomorphism, and let $a, b \in G$. Then
$a b=\left(b^{-1} a^{-1}\right)^{-1}=\varphi\left(b^{-1} a^{-1}\right)=\varphi\left(b^{-1}\right) \varphi\left(a^{-1}\right)=\left(b^{-1}\right)^{-1}\left(a^{-1}\right)^{-1}=b a$, so that G is abelian.

Problem

Let G be any group. Prove that the map from G to itself defined by $g \mapsto g^{2}$ is a homomorphism if and only if G is abelian.

Solution

(\Leftarrow) Suppose G is abelian. Then $\varphi(a b)=a b a b=a^{2} b^{2}=\varphi(a) \varphi(b)$, so that φ is a

Definition

A group action of a group G on a set A is a map from $G \times A$ to A (written as $g \cdot a$, for all $g \in G$ and $a \in A$) satisfying the following properties:

Definition

A group action of a group G on a set A is a map from $G \times A$ to A (written as $g \cdot a$, for all $g \in G$ and $a \in A$) satisfying the following properties:
(1) $g_{1} \cdot\left(g_{2} \cdot a\right)=\left(g_{1} g_{2}\right) \cdot a$, for all $g_{1}, g_{2} \in G, a \in A$, and

Definition

A group action of a group G on a set A is a map from $G \times A$ to A (written as $g \cdot a$, for all $g \in G$ and $a \in A$) satisfying the following properties:
(1) $g_{1} \cdot\left(g_{2} \cdot a\right)=\left(g_{1} g_{2}\right) \cdot a$, for all $g_{1}, g_{2} \in G, a \in A$, and
(2) $1 \cdot a=a$, for all $a \in A$.

Definition

A group action of a group G on a set A is a map from $G \times A$ to A (written as $g \cdot a$, for all $g \in G$ and $a \in A$) satisfying the following properties:
(1) $g_{1} \cdot\left(g_{2} \cdot a\right)=\left(g_{1} g_{2}\right) \cdot a$, for all $g_{1}, g_{2} \in G, a \in A$, and
(2) $1 \cdot a=a$, for all $a \in A$.

Definition

Let the group G act on the set A. For each fixed $g \in G$ we get a map σ_{g}. defined $\sigma_{g}: A \rightarrow A$ by $\sigma_{g}(a)=g \cdot a$. Then,

Definition

A group action of a group G on a set A is a map from $G \times A$ to A (written as $g \cdot a$, for all $g \in G$ and $a \in A$) satisfying the following properties:
(1) $g_{1} \cdot\left(g_{2} \cdot a\right)=\left(g_{1} g_{2}\right) \cdot a$, for all $g_{1}, g_{2} \in G, a \in A$, and
(2) $1 \cdot a=a$, for all $a \in A$.

Definition

Let the group G act on the set A. For each fixed $g \in G$ we get a map σ_{g}. defined $\sigma_{g}: A \rightarrow A$ by $\sigma_{g}(a)=g \cdot a$. Then,
(1) for each fixed $g \in G, \sigma_{g}$ is a permutation of A, and

Definition

A group action of a group G on a set A is a map from $G \times A$ to A (written as $g \cdot a$, for all $g \in G$ and $a \in A$) satisfying the following properties:
(1) $g_{1} \cdot\left(g_{2} \cdot a\right)=\left(g_{1} g_{2}\right) \cdot a$, for all $g_{1}, g_{2} \in G, a \in A$, and
(2) $1 \cdot a=a$, for all $a \in A$.

Definition

Let the group G act on the set A. For each fixed $g \in G$ we get a map σ_{g}. defined $\sigma_{g}: A \rightarrow A$ by $\sigma_{g}(a)=g \cdot a$. Then,
(1) for each fixed $g \in G, \sigma_{g}$ is a permutation of A, and
(2) the map from G to S_{A} defined by $g \mapsto \sigma_{g}$ is a homomorphism. This homomorphism called the permutation representation associated to the given action.

Example

Let ga $=a$, for all $g \in G, a \in A$. Properties 1 and 2 of a group action follow immediately. This action is called the trivial action and G is said to act trivially on A. Note that distinct elements of G induce the same permutation on A (in this case the identity permutation). The associated permutation representation $G \rightarrow S_{A}$ is the trivial homomorphism which maps every element of G to the identity. If G acts on a set B and distinct elements of G induce distinct permutations of B, the action is said to be faithful. A faithful action is therefore one in which the associated permutation representation is injective. The kernel of the action of G on B is defined to be $\{g \in G \mid g b=b$ for all $b \in B\}$, namely the elements of G which fix all the elements of B. For the trivial action, the kernel of the action is all of G and this action is not faithful when $|G|>1$.

Example

Let ga $=a$, for all $g \in G, a \in A$. Properties 1 and 2 of a group action follow immediately. This action is called the trivial action and G is said to act trivially on A. Note that distinct elements of G induce the same permutation on A (in this case the identity permutation). The associated permutation representation $G \rightarrow S_{A}$ is the trivial homomorphism which maps every element of G to the identity. If G acts on a set B and distinct elements of G induce distinct permutations of B, the action is said to be faithful. A faithful action is therefore one in which the associated permutation representation is injective. The kernel of the action of G on B is defined to be $\{g \in G \mid g b=b$ for all $b \in B\}$, namely the elements of G which fix all the elements of B. For the trivial action, the kernel of the action is all of G and this action is not faithful when $|G|>1$.

Problem

Show that the additive group \mathbb{Z} acts on itself by $z \cdot a=z+a$ for all $z, a \in \mathbb{Z}$

Example

Let ga $=a$, for all $g \in G, a \in A$. Properties 1 and 2 of a group action follow immediately. This action is called the trivial action and G is said to act trivially on A. Note that distinct elements of G induce the same permutation on A (in this case the identity permutation). The associated permutation representation $G \rightarrow S_{A}$ is the trivial homomorphism which maps every element of G to the identity. If G acts on a set B and distinct elements of G induce distinct permutations of B, the action is said to be faithful. A faithful action is therefore one in which the associated permutation representation is injective. The kernel of the action of G on B is defined to be $\{g \in G \mid g b=b$ for all $b \in B\}$, namely the elements of G which fix all the elements of B. For the trivial action, the kernel of the action is all of G and this action is not faithful when $|G|>1$.

Problem

Show that the additive group \mathbb{Z} acts on itself by $z \cdot a=z+a$ for all $z, a \in \mathbb{Z}$

Solution

Let $a \in \mathbb{Z}$. We have $0 \cdot a=0+a=a$. Now let $z_{1}, z_{2} \in \mathbb{Z}$. Then

Problem

Show that the additive group \mathbb{R} acts on the x, y plane $\mathbb{R} x \mathbb{R}$ by $r \cdot(x, y)=(x+r y, y)$.

Problem

Show that the additive group \mathbb{R} acts on the x, y plane $\mathbb{R} x \mathbb{R}$ by $r \cdot(x, y)=(x+r y, y)$.

Solution

Let $(x, y) \in \mathbb{R} \times \mathbb{R}$. We have $0 \cdot(x, y)=(x+0 y, y)=(x, y)$. Nowletr $r_{1}, r_{2} \in \mathbb{R}$. Then $r_{1} \cdot\left(r_{2} \cdot(x, y)\right)=r_{1} \cdot\left(x+r_{2} y, y\right)=\left(x+r_{2} y+r_{1} y, y\right)=\left(x+\left(r_{1}+r_{2}\right) y, y\right)=\left(r_{1}+r_{2}\right) \cdot(x, y)$

Problem

Show that the additive group \mathbb{R} acts on the x, y plane $\mathbb{R} x \mathbb{R}$ by $r \cdot(x, y)=(x+r y, y)$.

Solution

Let $(x, y) \in \mathbb{R} \times \mathbb{R}$. We have $0 \cdot(x, y)=(x+0 y, y)=(x, y)$. Nowletr $r_{1}, r_{2} \in \mathbb{R}$. Then
$r_{1} \cdot\left(r_{2} \cdot(x, y)\right)=r_{1} \cdot\left(x+r_{2} y, y\right)=\left(x+r_{2} y+r_{1} y, y\right)=\left(x+\left(r_{1}+r_{2}\right) y, y\right)=\left(r_{1}+r_{2}\right) \cdot(x, y)$

Problem

Let G be a group acting on a set A and fix some $a \in A$. Show that the following sets are subgroups of $G(a)$ the kernel of the action, (b) $\{g \in G \mid g a=a\}$ - this subgroup is called the stabilizer of a in G.

Solution

we need to show that the identity belongs to the set and that each is closed under multiplication and inversion. (a) Note that $1 \in K$ since $1 \cdot a=$ aforalla $\in A$. Now suppose $k_{1}, k_{2} \in K$, andleta $\in A$. Then $\left(k_{1} k_{2}\right) \cdot a=k_{1} \cdot\left(k_{2} \cdot a\right)=k_{1} \cdot a=a$, so that $k_{1} k_{2} \in K$. Now let $k \in K a n d a \in A$; then $k^{-1} \cdot a=k^{-1} \cdot(k \cdot a)=\left(k^{-1} k\right) \cdot a=1 \cdot a=a$, sothat $k^{-1} \in K$. Thus K is a subgroup of G.
(b) We have $1 \in S$ since $1 \cdot a=a$. Now suppose $s_{1}, s_{2} \in S$; then we have $\left(s_{1} s_{2}\right) \cdot a=s_{1} \cdot\left(s_{2} \cdot a\right)=s_{1} \cdot a=a$, so that $s_{1} s_{2} \in S$. Now let $s \in S$; we have $s^{-1} \cdot a=s^{-1} \cdot(s \cdot a)=\left(s^{-1} s\right) \cdot a=a$, so that $s^{-1} \in S$. Thus S is a subgroup of G.

Definition

Let G be a group. The subset H of G is a subgroup of G if H is nonempty and H is closed under products and inverses (i.e., $x, y \in H$ implies $x^{-1} \in H$ and $x y \in H$). If H is a subgroup of G we shall write $H \leq G$.

Definition

Let G be a group. The subset H of G is a subgroup of G if H is nonempty and H is closed under products and inverses (i.e., $x, y \in H$ implies $x^{-1} \in H$ and $x y \in H$). If H is a subgroup of G we shall write $H \leq G$.

Example

Definition

Let G be a group. The subset H of G is a subgroup of G if H is nonempty and H is closed under products and inverses (i.e., $x, y \in H$ implies $x^{-1} \in H$ and $x y \in H$). If H is a subgroup of G we shall write $H \leq G$.

Example

(1) $\mathbb{Z} \leq \mathbb{Q}$ and $\mathbb{Q} \leq \mathbb{R}$ with the operation of addition.

Definition

Let G be a group. The subset H of G is a subgroup of G if H is nonempty and H is closed under products and inverses (i.e., $x, y \in H$ implies $x^{-1} \in H$ and $x y \in H$). If H is a subgroup of G we shall write $H \leq G$.

Example

(1) $\mathbb{Z} \leq \mathbb{Q}$ and $\mathbb{Q} \leq \mathbb{R}$ with the operation of addition.
(2) Any group G has two subgroups: $H=G$ and $H=\{1\}$; the latter is called the trivial subgroup and will henceforth be denoted by 1 .

Definition

Let G be a group. The subset H of G is a subgroup of G if H is nonempty and H is closed under products and inverses (i.e., $x, y \in H$ implies $x^{-1} \in H$ and $x y \in H$). If H is a subgroup of G we shall write $H \leq G$.

Example

(1) $\mathbb{Z} \leq \mathbb{Q}$ and $\mathbb{Q} \leq \mathbb{R}$ with the operation of addition.
(2) Any group G has two subgroups: $H=G$ and $H=\{1\}$; the latter is called the trivial subgroup and will henceforth be denoted by 1 .
(3) If $G=D_{2 n}$ is the dihedral group of order $2 n$, let H be $\left\{1, r, r^{2}, \ldots, r^{n-1}\right\}$, the set of all rotations in G. Since the product of two rotations is again a rotation and the inverse of a rotation is also a rotation it follows that H is a subgroup of $D_{2 n}$ of order n.

Proposition

(The Subgroup Criterion) A subset H of a group G is a subgroup if and only if

Furthermore, if H is finite, then it suffices to check that H is nonempty and closed under multiplication.

Proposition

(The Subgroup Criterion) A subset H of a group G is a subgroup if and only if
(1) $H \neq \emptyset$, and

Furthermore, if H is finite, then it suffices to check that H is nonempty and closed under multiplication.

Proposition

(The Subgroup Criterion) A subset H of a group G is a subgroup if and only if
(1) $H \neq \emptyset$, and
(2) for all $x, y \in H, x y^{-1} \in H$

Furthermore, if H is finite, then it suffices to check that H is nonempty and closed under multiplication.

Proposition

(The Subgroup Criterion) A subset H of a group G is a subgroup if and only if
(1) $H \neq \emptyset$, and
(2) for all $x, y \in H, x y^{-1} \in H$

Furthermore, if H is finite, then it suffices to check that H is nonempty and closed under multiplication.

Problem

Show that the following subsets of the dihedral group D_{8} are actually subgroups: (a) $\left\{1, r^{2}, s, s r^{2}\right\},(\mathrm{b})\left\{1, r^{2}, s r, s r^{3}\right\}$

Solution

(a) We have
$r^{2} r^{2}=1, r^{2} s=s r^{2}, r^{2} s r^{2}=s, s r^{2}=s r^{2}, s s=1, s s r^{2}=r^{2}, s r^{2} r^{2}=s, s r^{2} s=r^{2}$, and
$s r^{2} s r^{2}=1$, so that this set is closed under multiplication. Moreover, $\left(r^{2}\right)^{-1}=r^{2}, s^{-1}=s$, and $\left(s r^{2}\right)^{-1}=s r^{2}$, so this set is closed under inversion. Thus it is a subgroup.
(b) We have
$r^{2} r^{2}=1, r^{2} s r=s r^{3}, r^{2} s r^{3}=s r, s r r^{2}=s r^{3}, s r s r=1, s r s r^{3}=r^{2}, s r^{3} r^{2}=s r, s r^{3} s r=r^{2}$, and $s r^{3} s r^{3}=1$, so that this set is closed under multiplication. Moreover, $\left(r^{2}\right)^{-1}=r^{2},(s r)^{-1}=s r$, and $\left(s r^{3}\right)^{-1}=s r^{3}$, so this set is closed under inversion. Thus it is a subgroup.

Solution

(a) We have
$r^{2} r^{2}=1, r^{2} s=s r^{2}, r^{2} s r^{2}=s, s r^{2}=s r^{2}, s s=1, s s r^{2}=r^{2}, s r^{2} r^{2}=s, s r^{2} s=r^{2}$, and
$s r^{2} s r^{2}=1$, so that this set is closed under multiplication. Moreover, $\left(r^{2}\right)^{-1}=r^{2}, s^{-1}=s$, and $\left(s r^{2}\right)^{-1}=s r^{2}$, so this set is closed under inversion. Thus it is a subgroup.
(b) We have
$r^{2} r^{2}=1, r^{2} s r=s r^{3}, r^{2} s r^{3}=s r, s r r^{2}=s r^{3}, s r s r=1, s r s r^{3}=r^{2}, s r^{3} r^{2}=s r, s r^{3} s r=r^{2}$, and $s r^{3} s r^{3}=1$, so that this set is closed under multiplication. Moreover, $\left(r^{2}\right)^{-1}=r^{2},(s r)^{-1}=s r$, and $\left(s r^{3}\right)^{-1}=s r^{3}$, so this set is closed under inversion. Thus it is a subgroup.

Problem

Prove that G cannot have a subgroup H with $|H|=n-1$, where $n=|G|>2$.

Solution

(a) We have
$r^{2} r^{2}=1, r^{2} s=s r^{2}, r^{2} s r^{2}=s, s r^{2}=s r^{2}, s s=1, s s r^{2}=r^{2}, s r^{2} r^{2}=s, s r^{2} s=r^{2}$, and
$s r^{2} s r^{2}=1$, so that this set is closed under multiplication. Moreover, $\left(r^{2}\right)^{-1}=r^{2}, s^{-1}=s$, and $\left(s r^{2}\right)^{-1}=s r^{2}$, so this set is closed under inversion. Thus it is a subgroup.
(b) We have
$r^{2} r^{2}=1, r^{2} s r=s r^{3}, r^{2} s r^{3}=s r, s r r^{2}=s r^{3}, s r s r=1, s r s r^{3}=r^{2}, s r^{3} r^{2}=s r, s r^{3} s r=r^{2}$, and $s r^{3} s r^{3}=1$, so that this set is closed under multiplication. Moreover, $\left(r^{2}\right)^{-1}=r^{2},(s r)^{-1}=s r$, and $\left(s r^{3}\right)^{-1}=s r^{3}$, so this set is closed under inversion. Thus it is a subgroup.

Problem

Prove that G cannot have a subgroup H with $|H|=n-1$, where $n=|G|>2$.

Solution

Under these conditions, there exists a nonidentity element $x \in H$ and an element $y \notin H$.
Consider the product $x y$. If $x y \in H$, then since $x^{-1} \in H$ and H is a subgroup, $y \in H$, a

Problem

Let H and K be subgroups of G. Prove that $H \cup K$ is a subgroup if and only if either $H \subseteq K$ or $K \subseteq H$.

Problem

Let H and K be subgroups of G. Prove that $H \cup K$ is a subgroup if and only if either $H \subseteq K$ or $K \subseteq H$.

Solution

The (\Leftarrow) direction is clear. To see (\Rightarrow), suppose that $H \cup K$ is a subgroup of G and that $H \nsubseteq K a n d K \nsubseteq H$; that is, there exist $x \in H$ with $x \notin K$ and $y \in K$ with $y \notin H$. Now we have $x y \in H \cup K$, so that either $x y \in H$ or $x y \in K$. If $x y \in H$, then we have $x^{-1} x y=y \in H$, a contradiction. Similarly, if $x y \in K$, we have $x \in K$, a contradiction. Then it must be the case that either $H \subseteq K$ or $K \subseteq H$.

Problem

Let G be a group. (a) Prove that if H and K are subgroups of G, then so is $H \cap K$.
(b) Prove that if $\left\{H_{i}\right\}_{i \in I}$ is a family of subgroups of G then so is $\bigcap_{i \in I} H_{i}$.(or)Prove that the intersection of an arbitrary nonempty collection of subgroups of G is again a subgroup of G (do not assume the collection is countable)

Problem

Let G be a group. (a) Prove that if H and K are subgroups of G, then so is $H \cap K$.
(b) Prove that if $\left\{H_{i}\right\}_{i \in I}$ is a family of subgroups of G then so is $\bigcap_{i \in 1} H_{i}$.(or)Prove that the intersection of an arbitrary nonempty collection of subgroups of G is again a subgroup of G (do not assume the collection is countable)

Solution

(a) Note that $H \cap K$ is not empty since $1 \in H \cap K$. Now suppose $x, y \in H \cap K$. Then since H and K are subgroups, we have $x y^{-1} \in H$ and $x y^{-1} \in K$ by the subgroup criterion; thus $x y^{-1} \in H \cap K$. By the subgroup criterion, $H \cap K$ is a subgroup of G.
(b) Note that $\bigcap_{i \in I} H_{i}$ is not empty since $1 \in H_{i}$ for each $i \in I$. Now let $x, y \in \bigcap_{i \in I} H_{i}$. Then $x, y \in H_{i}$ for each $i \in I$, and by the subgroup criterion, $x y^{-1} \in H_{i}$ for each $i \in I$.

Thus $x y^{-1} \in \bigcap_{i \in I} H_{i}$. By the subgroup criterion, $\bigcap_{i \in I} H_{i}$ is a subgroup of G.

We now introduce some important families of subgroups of an arbitrary group G which in particular provide many examples of subgroups. Let A be any nonempty subset of G.

Definition

Define $C_{G}(A)=\left\{g \in G \mid g a g^{-1}=a\right.$ for all $\left.a \in A\right\}$. This subset of G is called the centralizer of A in G. Since $g a g^{-1}=a$ if and only if $g a=a g, C_{G}(A)$ is the set of elements of G which commute with every element of A.

We now introduce some important families of subgroups of an arbitrary group G which in particular provide many examples of subgroups. Let A be any nonempty subset of G.

Definition

Define $C_{G}(A)=\left\{g \in G \mid g a g^{-1}=a\right.$ for all $\left.a \in A\right\}$. This subset of G is called the centralizer of A in G. Since $g a g^{-1}=a$ if and only if $g a=a g, C_{G}(A)$ is the set of elements of G which commute with every element of A.

Definition

Define $Z(G)=\{g \in G \mid g x=x g$ for all $x \in G\}$, the set of elements commuting with all the elements of G. This subset of G is called the center of G.

Definition

Define $g A g^{-1}=\left\{g a g^{-1} \mid a \in A\right\}$. Define the normalizer of A in G to be the set $N_{G}(A)=\left\{g \in G \mid g A g^{-1}=A\right\}$.

Definition

Define $g A g^{-1}=\left\{g a g^{-1} \mid a \in A\right\}$. Define the normalizer of A in G to be the set $N_{G}(A)=\left\{g \in G \mid g A g^{-1}=A\right\}$.

Example

If G is abelian then all the elements of G commute, so $Z(G)=G$. Similarly, $C_{G}(A)=N_{G}(A)=G$ for any subset A of G since $g a g^{-1}=g g^{-1} a=a$ for every $g \in G$ and every $a \in A$.

Definition

Define $g A g^{-1}=\left\{g a g^{-1} \mid a \in A\right\}$. Define the normalizer of A in G to be the set $N_{G}(A)=\left\{g \in G \mid g A g^{-1}=A\right\}$.

Example

If G is abelian then all the elements of G commute, so $Z(G)=G$. Similarly, $C_{G}(A)=N_{G}(A)=G$ for any subset A of G since $g a g^{-1}=g g^{-1} a=a$ for every $g \in G$ and every $a \in A$.

Definition

if G is a group acting on a set S and s is some fixed element of S, the stabilizer of s in G is the set $G_{s}=\{g \in G \mid g \cdot s=s\}$.

Problem

Prove that $C_{G}(A)=\left\{g \in G \mid g^{-1} a g=a\right.$ for all $\left.a \in A\right\}$.

Problem

Prove that $C_{G}(A)=\left\{g \in G \mid g^{-1} a g=a\right.$ for all $\left.a \in A\right\}$.

Solution

By definition, $C_{G}(A)=\left\{g \in G \mid g^{-1}=a\right.$ for all $\left.a \in A\right\}$.
(\subseteq) If $g \in C_{G}(A)$, then $\mathrm{gag}^{-1}=a$ for all $a \in A$. Left multiplying by g^{-1} and right multiplying by g, we have that $a=g^{-1} a g$ for all $a \in A$.
(\supseteq) If $g \in G$ such that $g^{-1} a g=a$ for all $a \in A$, then left multiplying by g and right multiplying by g^{-1} we have that $a=\mathrm{gag}^{-1}$ for all $a \in A$.

Problem

Prove that $C_{G}(A)=\left\{g \in G \mid g^{-1} a g=a\right.$ for all $\left.a \in A\right\}$.

Solution

By definition, $C_{G}(A)=\left\{g \in G \mid g^{-1}=a\right.$ for all $\left.a \in A\right\}$.
(\subseteq) If $g \in C_{G}(A)$, then $g a g^{-1}=a$ for all $a \in A$. Left multiplying by g^{-1} and right multiplying by g, we have that $a=g^{-1} a g$ for all $a \in A$.
(\supseteq) If $g \in G$ such that $g^{-1} a g=a$ for all $a \in A$, then left multiplying by g and right multiplying by g^{-1} we have that $a=g a g^{-1}$ for all $a \in A$.

Problem

Prove that $C_{G}(Z(G))=G$ and deduce that $N_{G}(Z(G))=G$

Problem

Prove that $C_{G}(A)=\left\{g \in G \mid g^{-1} a g=a\right.$ for all $\left.a \in A\right\}$.

Solution

By definition, $C_{G}(A)=\left\{g \in G \mid g a g^{-1}=a\right.$ for all $\left.a \in A\right\}$.
(\subseteq) If $g \in C_{G}(A)$, then $g a g^{-1}=a$ for all $a \in A$. Left multiplying by g^{-1} and right multiplying by g, we have that $a=g^{-1} a g$ for all $a \in A$.
(\supseteq) If $g \in G$ such that $g^{-1} a g=a$ for all $a \in A$, then left multiplying by g and right multiplying by g^{-1} we have that $a=g a g^{-1}$ for all $a \in A$.

Problem

Prove that $C_{G}(Z(G))=G$ and deduce that $N_{G}(Z(G))=G$

Solution

First we show that $C_{G}(Z(G))=G$.
(\subseteq) is clear. (\supseteq) Suppose $g \in G$. Then by definition, for all $a \in Z(G)$, we have ga $=a g$.
That is, for all $a \in Z(G)$, we have $a=g a g^{-1}$. Thus $g \in C_{G}(Z(G))$.

Problem

Prove that if A and B are subsets of G with $A \subseteq B$ then $C_{G}(B)$ is a subgroup of $C_{G}(A)$.

Problem

Prove that if A and B are subsets of G with $A \subseteq B$ then $C_{G}(B)$ is a subgroup of $C_{G}(A)$.

Solution

Let $x \in C_{G}(B)$. Then for all $b \in B, x b x^{-1}=b$. Since $A \subseteq B$, for all $a \in A$ we have $x a x^{-1}=a$, so that $x \in C_{G}(A)$. Thus $C_{G}(B) \subseteq C_{G}(A)$, and hence $C_{G}(B) \leq C_{G}(A)$

Problem

Prove that if A and B are subsets of G with $A \subseteq B$ then $C_{G}(B)$ is a subgroup of $C_{G}(A)$.

Solution

Let $x \in C_{G}(B)$. Then for all $b \in B, x b x^{-1}=b$. Since $A \subseteq B$, for all $a \in A$ we have $x^{x} x^{-1}=a$, so that $x \in C_{G}(A)$. Thus $C_{G}(B) \subseteq C_{G}(A)$, and hence $C_{G}(B) \leq C_{G}(A)$

Problem

Let H be a subgroup of order 2 in G. Show that $N_{G}(H)=C_{G}(H)$. Deduce that if $N_{G}(H)=G$, then $H \leq Z(G)$.

Problem

Prove that if A and B are subsets of G with $A \subseteq B$ then $C_{G}(B)$ is a subgroup of $C_{G}(A)$.

Solution

Let $x \in C_{G}(B)$. Then for all $b \in B, x b x^{-1}=b$. Since $A \subseteq B$, for all $a \in A$ we have $x^{x} x^{-1}=a$, so that $x \in C_{G}(A)$. Thus $C_{G}(B) \subseteq C_{G}(A)$, and hence $C_{G}(B) \leq C_{G}(A)$

Problem

Let H be a subgroup of order 2 in G. Show that $N_{G}(H)=C_{G}(H)$. Deduce that if $N_{G}(H)=G$, then $H \leq Z(G)$.

Solution

Say $H=\{1, h\}$.
We already know that $C_{G}(H) \subseteq N_{G}(H)$. Now suppose $x \in N_{G}(H)$; then $\left\{x 1 x^{-1}\right.$, $\left.x h x^{-1}\right\}=\{1, h\}$. Clearly, then, we have $x h x^{-1}=h$. Thus $x \in C_{G}(H)$. Hence $N_{G}(H)=C_{G}(H)$.

If $N_{G}(H)=G$, we have $C_{G}(H)=G$. Then $g^{g h} g^{-1}=h$ for all $h \in H$, so that $g h=h g$ for

Problem

Prove that $Z(G) \leq N_{G}(A)$ for any subset A of G.

Problem

Prove that $Z(G) \leq N_{G}(A)$ for any subset A of G.

Solution

If $A=\emptyset$, the statement is vacuously true since $N_{G}(A)=G$. If A is not empty, let $x \in Z(G)$. Then $x a x^{-1}=a$ for all $a \in A$, so that $x A x^{-1}=A$. Hence $x \in N_{G}(A)$.

Definition

A group H is cyclic if H can be generated by a single element, i.e., there is some element $x \in H$ such that $H=\left\{x^{n} \mid n \in \mathbb{Z}\right\}$ (where as usual the operation is multiplication).

Definition

A group H is cyclic if H can be generated by a single element, i.e., there is some element $x \in H$ such that $H=\left\{x^{n} \mid n \in \mathbb{Z}\right\}$ (where as usual the operation is multiplication).

Remark

In additive notation H is cyclic if $H=\{n x \mid n \in \mathbb{Z}\}$. In both cases we shall write $H=\langle x\rangle$ and say H is generated by x (and x is a generator of H). A cyclic group may have more than one generator. For example, if $H=\langle x\rangle$, then also $H=\left\langle x^{-1}\right\rangle$.

Proposition

If $H=\langle x\rangle$, then $|H|=|x|$ (where if one side of this equality is infinite, so is the other). More specifically (1) if $|H|=n<\infty$, then $x^{n}=1$ and $1, x, x^{2}, \ldots, x^{n-1}$ are all the distinct elements of H, and (2) if $|H|=\infty$, then $x^{n} \neq 1$ for all $n \neq 0$ and $x^{a} \neq x^{b}$ for all $a \neq b$ in \mathbb{Z}.

Proposition

If $H=\langle x\rangle$, then $|H|=|x|$ (where if one side of this equality is infinite, so is the other).
More specifically (1) if $|H|=n<\infty$, then $x^{n}=1$ and $1, x, x^{2}, \ldots, x^{n-1}$ are all the distinct elements of H, and (2) if $|H|=\infty$, then $x^{n} \neq 1$ for all $n \neq 0$ and $x^{a} \neq x^{b}$ for all $a \neq b$ in \mathbb{Z}.

Proposition

Let G be an arbitrary group, $x \in G$ and let $m, n \in \mathbb{Z}$. If $x^{n}=1$ and $x^{m}=1$, then $x^{d}=1$, where $d=(m, n)$. In particular, if $x^{m}=1$ for some $m \in \mathbb{Z}$, then $|x|$ divides m.

Proposition

If $H=\langle x\rangle$, then $|H|=|x|$ (where if one side of this equality is infinite, so is the other).
More specifically (1) if $|H|=n<\infty$, then $x^{n}=1$ and $1, x, x^{2}, \ldots, x^{n-1}$ are all the distinct elements of H, and (2) if $|H|=\infty$, then $x^{n} \neq 1$ for all $n \neq 0$ and $x^{a} \neq x^{b}$ for all $a \neq b$ in \mathbb{Z}.

Proposition

Let G be an arbitrary group, $x \in G$ and let $m, n \in \mathbb{Z}$. If $x^{n}=1$ and $x^{m}=1$, then $x^{d}=1$, where $d=(m, n)$. In particular, if $x^{m}=1$ for some $m \in \mathbb{Z}$, then $|x|$ divides m.

Theorem

Let $H=\langle x\rangle$ be a cyclic group. Then every subgroup H is cyclic. More precisely, if $K \leq H$, then either $K=\{1\}$ or $K=\left\langle x^{d}\right\rangle$, where d is the smallest positive integer such that $x^{d} \in K$.

Problem

Find all cyclic subgroups of D_{8}. Find a proper subgroup of D_{8} which is not cyclic.

Problem

Find all cyclic subgroups of D_{8}. Find a proper subgroup of D_{8} which is not cyclic.

Solution

We have the following.
(1) $\langle 1\rangle=\{1\}(2)\langle r\rangle=\left\{1, r, r^{2}, r^{3}\right\}(3)\left\langle r^{2}\right\rangle=\left\{1, r^{2}\right\}$ (4) $\left\langle r^{3}\right\rangle=\left\{1, r, r^{2}, r^{3}\right\}$
$(5)\langle s\rangle=\{1, s\}(6)\langle s r\rangle=\{1, s r\}(7)\left\langle s r^{2}\right\rangle=\left\{1, s r^{2}\right\}(8)\left\langle s r^{3}\right\rangle=\left\{1, s r^{3}\right\}$. We know that
$\left\{1, r^{2}, s, r^{2} s\right\}$ is a subgroup of D_{8}, but is not on the above list, hence is not cyclic.

Problem

Find all cyclic subgroups of D_{8}. Find a proper subgroup of D_{8} which is not cyclic.

Solution

We have the following.
(1) $\langle 1\rangle=\{1\}(2)\langle r\rangle=\left\{1, r, r^{2}, r^{3}\right\}(3)\left\langle r^{2}\right\rangle=\left\{1, r^{2}\right\}(4)\left\langle r^{3}\right\rangle=\left\{1, r, r^{2}, r^{3}\right\}$
$(5)\langle s\rangle=\{1, s\}(6)\langle s r\rangle=\{1, s r\}(7)\left\langle s r^{2}\right\rangle=\left\{1, s r^{2}\right\}(8)\left\langle s r^{3}\right\rangle=\left\{1, s r^{3}\right\}$. We know that
$\left\{1, r^{2}, s, r^{2} s\right\}$ is a subgroup of D_{8}, but is not on the above list, hence is not cyclic.

Problem

Let p be a prime and let n be a positive integer. Show that if x is an element of the group G such that $x^{p^{n}}=1$ then $|x|=p^{m}$ for some $m \leq n$.

Solution

We prove a lemma.
Lemma: Let G be a group and $x \in G$ an element of finite order, say, $|x|=n$. If $x^{m}=1$, then n divides m. Proof: Suppose to the contrary that n does not divide m; then by the Division Algorithm there exist integers q and r such that $0<r<|n|$ and $m=q n+r$. Then we have $1=x^{m}=x^{q n+r}=\left(x^{n}\right)^{q}+x^{r}=x^{r}$. But recall that by definition n is the least positive integer with this property, so we have a contradiction. Thus n divides m.

Solution

We prove a lemma.
Lemma: Let G be a group and $x \in G$ an element of finite order, say, $|x|=n$. If $x^{m}=1$, then n divides m. Proof: Suppose to the contrary that n does not divide m; then by the Division Algorithm there exist integers q and r such that $0<r<|n|$ and $m=q n+r$. Then we have $1=x^{m}=x^{q n+r}=\left(x^{n}\right)^{q}+x^{r}=x^{r}$. But recall that by definition n is the least positive integer with this property, so we have a contradiction. Thus n divides m.

Problem

Let G be a finite group and let $x \in G$.
(1) Prove that if $g \in N_{G}(\langle x\rangle)$ then $g x g^{-1}=x^{a}$ for some integer a.
(2) Show conversely that if $g x g^{-1}=x^{a}$ for some integer a, then $g \in N_{G}(\langle x\rangle)$. [Hint:

Show first that $g x^{k} g^{-1}=\left(g k g^{-1}\right)^{k}=x^{a k}$ for any integer k, so that $g\langle x\rangle g^{-1} \leq\langle x\rangle$. If x has order n, show that the elements $g x^{i} g^{-1}$ are distinct for $i \in\{0,1, \ldots, n-1\}$, so that $\left|g\langle x\rangle g^{-1}\right|=|\langle x\rangle|=n$ and conclude that $g\langle x\rangle g^{-1}=\langle x\rangle$.]

Solution

(1) Let $g \in N_{G}(\langle x\rangle)$. By definition, we have $g \times g^{-1} \in\langle x\rangle$, so that $g x g^{-1}=x^{a}$ for some integer a.
(2) We prove some lemmas. Lemma 1: Let G be a group and let $x, g \in G$. Then for all integers $k, g x^{k} g^{-1}=\left(g x g^{-1}\right)^{k}$. Proof: First we prove the conclusion for nonnegative k by induction on k. If $k=0$, we have $g x^{0} g^{-1}=g g^{-1}=1=\left(g x g^{-1}\right)^{0}$. Now suppose the conclusion holds for some $k \geq 0$; then
$g x^{k+1} g^{-1}=g x x^{k} g^{-1}=g x g^{-1} g x^{k} g^{-1}=g x g^{-1}\left(g x g^{-1}\right)^{k}=\left(g x g^{-1}\right)^{k+1}$. By induction, the conclusion holds for all nonnegative k. Now suppose $k<0$; then $g x^{k} g^{-1}=\left(g x^{-k} g^{-1}\right)^{-1}=\left(g x g^{-1}\right)^{-k^{-1}}=\left(g x g^{-1}\right)^{k}$. Thus the conclusion holds for all integers k.

Lemma 2: Let G be a group and let $x, g \in G$ such that $g x g^{-1}=x^{a}$ for some integer a. Then $g\langle x\rangle g^{-1}$ is a subgroup of $\langle x\rangle$. Proof: Let $g x^{k} g^{-1} \in g\langle x\rangle g^{-1}$; by Lemma 1 we have $g x^{k} g^{-1}=\left(g x g^{-1}\right)^{k}=x^{a k}$, so that $g x g^{-1} \in\langle x\rangle$. Thus $g\langle x\rangle g^{-1} \subseteq\langle x\rangle$. Now let $g x^{b} g^{-1}, g x^{c} g^{-1} \in g\langle x\rangle g^{-1}$. Then

Lemma 3:

Let G be a group and let $x, g \in G$ such that $g x g^{-1}=x^{a}$ for some integer a and such that $|x|=n, n \in \mathbb{Z}$. Then $g x^{i} g^{-1}$ aredistinctfori $\in\{0,1, \ldots, n-1\}$. Proof: Choose distinct $i, j \in\{0,1, \ldots, n-1\}$. By a previous exercise, $x^{i} \neq x^{j}$. Suppose now that $g x^{i} g^{-1}=g x^{j} g^{-1}$; by cancellation we have $x^{i}=x^{j}$, a contradiction. Thus the $g x^{i} g^{-1}$ are distinct. \square
Now to the main result; suppose $g x g^{-1}=x^{a}$ for some integer a. Since G has finite order, $|x|=n$ for some n. By Lemma 2, $g\langle x\rangle g^{-1} \leq\langle x\rangle$, and by Lemma 3 we have $\left|g\langle x\rangle g^{-1}\right|=|\langle x\rangle|$. Since G is finite, then, we have $g\langle x\rangle g^{-1}=\langle x\rangle$. Thus $g \in N_{G}(\langle x\rangle)$.

Proposition

If \mathcal{A} is any nonempty collection of subgroups of G, then the intersection of all members of \mathcal{A} is also a subgroup of G.

Proposition

If \mathcal{A} is any nonempty collection of subgroups of G, then the intersection of all members of \mathcal{A} is also a subgroup of G.

Proof.

This is an easy application of the subgroup criterion (see [?]). Let $K=\cap_{H \in \mathcal{A}} H$. Since each $H \in \mathcal{A}$ is a subgroup, $1 \in H$, so $1 \in K$, that is, $K \neq \emptyset$. If $a, b \in K$, then $a, b \in H$, for all $H \in \mathcal{A}$. Since each H is a group, $a b^{-1} \in H$, for all H, hence $a b^{-1} \in K$. Then $K \leq G$.

Proposition

If \mathcal{A} is any nonempty collection of subgroups of G, then the intersection of all members of \mathcal{A} is also a subgroup of G.

Proof.

This is an easy application of the subgroup criterion (see [?]). Let $K=\cap_{H \in \mathcal{A}} H$. Since each $H \in \mathcal{A}$ is a subgroup, $1 \in H$, so $1 \in K$, that is, $K \neq \emptyset$. If $a, b \in K$, then $a, b \in H$, for all $H \in \mathcal{A}$. Since each H is a group, $a b^{-1} \in H$, for all H, hence $a b^{-1} \in K$. Then $K \leq G$.

Definition

If A is any subset of the group G define $\langle A\rangle=\cap_{A \subseteq H, H \leq G}$. This is called the subgroup of G generated by A.

Problem

Let G be a group. Prove that if $H \leq G$ is a subgroup then $\langle H\rangle=H$.

Problem

Let G be a group. Prove that if $H \leq G$ is a subgroup then $\langle H\rangle=H$.

Solution

That $H \subseteq\langle H\rangle$ is clear. Now suppose $x \in\langle H\rangle$. We can write x as a finite product $h_{1} h_{2} \cdots h_{n}$ of elements of H; since H is a subgroup, then, $x \in H$.

Problem

Let G be a group. Prove that if $H \leq G$ is a subgroup then $\langle H\rangle=H$.

Solution

That $H \subseteq\langle H\rangle$ is clear. Now suppose $x \in\langle H\rangle$. We can write x as a finite product $h_{1} h_{2} \cdots h_{n}$ of elements of H; since H is a subgroup, then, $x \in H$.

Problem

Let G be a group, with $A \subseteq B \subseteq G$. Prove that $\langle A\rangle \leq\langle B\rangle$. Give an example where $A \subseteq B$ with $A \neq B$ but $\langle A\rangle=\langle B\rangle$.

Problem

Let G be a group. Prove that if $H \leq G$ is a subgroup then $\langle H\rangle=H$.

Solution

That $H \subseteq\langle H\rangle$ is clear. Now suppose $x \in\langle H\rangle$. We can write x as a finite product $h_{1} h_{2} \cdots h_{n}$ of elements of H; since H is a subgroup, then, $x \in H$.

Problem

Let G be a group, with $A \subseteq B \subseteq G$. Prove that $\langle A\rangle \leq\langle B\rangle$. Give an example where $A \subseteq B$ with $A \neq B$ but $\langle A\rangle=\langle B\rangle$.

Solution

Let $\mathcal{A}=\{H \leq G \mid A \subseteq H\}$ and $\mathcal{B}=\{H \leq G \mid B \subseteq H\}$. Since $A \subseteq B$, we have $A \subseteq H$ whenever $B \subseteq H$; thus $\mathcal{B} \subseteq \mathcal{A}$. By definition, we have $\langle A\rangle=\cap \mathcal{A}$ and $\langle B\rangle=\cap \mathcal{B}$. We know from set theory that $\cap \mathcal{A} \subseteq \cap \mathcal{B}$, so that $\langle A\rangle \subseteq\langle B\rangle$.

Now since $\langle A\rangle$ is itself a subgroup of G, we have $\langle A\rangle \leq\langle B\rangle$.
Now suppose $G=\langle x\rangle$ is cyclic. Then $\{x\} \subsetneq G$, but we have $\langle x\rangle=\langle G\rangle$.

Problem

Let G be a group and let $H \leq G$ be an abelian subgroup. Show that $\langle H, Z(G)\rangle$ is abelian. Give an explicit example of an abelian subgroup H of a group G such that $\left\langle H, C_{G}(H)\right\rangle$ is not abelian

Problem

Let G be a group and let $H \leq G$ be an abelian subgroup. Show that $\langle H, Z(G)\rangle$ is abelian. Give an explicit example of an abelian subgroup H of a group G such that $\left\langle H, C_{G}(H)\right\rangle$ is not abelian

Solution

We begin with a lemma.
Lemma: Let G be a group, $H \leq G$ an abelian subgroup. Then every element of $\langle H, Z(G)\rangle$ is of the form $h z$ for some $h \in H$ and $z \in Z(G)$. Proof: Recall that every element of $\langle H, Z(G)\rangle$ can be written as a (finite) word $a_{1} a_{2} \cdots a_{k}$ for some integer k and $a_{i} \in H \cup Z(G)$. We proceed by induction on k, the length of a word in $H \cup Z(G)$. If $k=1$, we have $x=a_{1}$; if $a_{1} \in H$ we have $x=a_{1} \cdot 1$, and if $a_{1} \in Z(G)$ we have $x=1 \cdot a_{1}$. Now suppose all words of length k can be written in the form $h z$, and let $x=a_{1} a_{2} \cdots a_{k+1}$ be a word of length $k+1$. By the induction hypothesis we have $a_{2} \cdots a_{k+1}=h z$ for some $h \in H$ and $z \in Z(G)$. Now if $a_{1} \in H$, we have $x=\left(a_{1} h\right) \cdot z$, and if $a_{1} \in Z(G)$, then $x=h \cdot\left(a_{1} z\right)$. By induction, every element of $\langle H, Z(G)\rangle$ is of the

Problem

Let G be a group and $H \leq G$. Show that $H=\langle H \backslash\{1\}\rangle$.

Problem

Let G be a group and $H \leq G$. Show that $H=\langle H \backslash\{1\}\rangle$.

Solution

We have $H \backslash\{1\} \subseteq\langle H \backslash\{1\}\rangle$. If $H=1$, then $\langle H \backslash\{1\}\rangle=\langle\emptyset\rangle=1=H$. If $H \neq 1$, there exists some nonidentity $h \in H$. So $h \in H \backslash\{1\}$, so that $h h^{-1}=1 \in\langle H \backslash\{1\}\rangle$. Thus $H \subseteq\langle H \backslash\{1\}\rangle$.

Now if $x \in\langle H \backslash\{1\}\rangle$, we can write $x=a_{1} a_{2} \cdots a_{n}$ for some integer n and group elements $a_{i} \in H \backslash\{1\} ;$ since H is a subgroup, then, $x \in H$.

