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Introduction to Groups Basic axioms

Definition

1 A binary operation ? on a set G is a function ? : G × G −→ G . For any a, b ∈ G we

shall write a ? b for ?(a, b)

2 A binary operation ? on a set G is associative if for all a, b, c ∈ G we have

a ? (b ? c) = (a ? b) ? c.

3 If ? is a binary operation on a set G we say elements a and b of G commute if

a ? b = b ? a. We say ?(orG) is commutative if for all a, b ∈ G , a ? b = b ? a.
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Introduction to Groups Basic axioms

Definition

1 A group is an ordered pair (G , ?) where G is a set and ? is a binary operation on G

satisfying the following axioms:

(a ? b) ? c = a ? (b ? c), for all a, b, c ∈ G , i.e., ? is associative,

there exists an element e in G , called an identity of G , such that for all a ∈ G we have

a ? e = e ? a = a,

for each a ∈ G there is an element a−1 of G , called an inverse of a, such that

a ? a−1 = a−1 ? a = e

2 The group (G , ?) i s called abelian (or commutative ) if a ? b = b ? a for all a, b ∈ G .
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Introduction to Groups Basic axioms

Proposition

If G is a group under the operation ? , then

1 the identity of G is unique

2 for each a ∈ G , a−1 is uniquely determined

3 (a−1)−1 = a for all a ∈ G

4 (a ? b)−1 = (b−1) ? (a−1)

5 for any a1, a2, . . . , an ∈ G the value of a1 ? a2 ? . . . ? an is independent of how the

expression is bracketed (this is called the generalized associative law).
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Dihedral groups

Definition

For each n ∈ Z+, n ≥ 3 let D2n be the set of symmetries of a regular n-gon, where a

symmetry is any rigid motion of the n-gon which can be effected by taking a copy of the

n-gon, moving this copy in any fashion in 3-space and then placing the copy back on the

original n-gon so it exactly covers it.

A presentation for the dihedral group D2n (using the generators and relations ) is then

D2n = 〈r , s | rn = s2 = 1, rs = sr−1〉 .

Remark

1, r , r 2, . . . , rn−1 are all distinct and rn = 1, so |r | = n

|s| = 2.

s 6= r i for any i

sr i 6= sr j , for all 0 ≤ i , j ≤ n − 1 with i 6= j , so

D2n = {1, r , r 2, . . . , rn−1, s, sr , . . . , srn−1}

r i s = sr−i , for all 0 ≤ i ≤ n.
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Dihedral groups

Problem

Compute the order of each of the elements in the following groups: (a) D6 (b) D8 (c) D10.

Solution

Recall that every element of D2n can be represented uniquely as s i r j for some i = 0, 1

and 0 ≤ j < n. Moreover, r i s = sr−i for all 0 ≤ i ≤ n. From this we deduce that

(sr i )(sr i ) = ssr−i r i = 1, so that sr i has order 2 for 0 ≤ i ≤ n (a)

D6 = {1, r , r 2, s, sr , sr 2}, Let the order of an element α is denoted by |α|. Then

|1| = 1, |r | = 3, |r 2| = 3, |s| = |sr | = |sr 2| = 2. (b)In D8,

|1| = 1, |r | = 4, |r 2| = 2, |r 3| = 4, |s| = |sr | = |sr 2| = |sr 3| = 2. (c) In D10,

|1| = 1, |r | = |r 2| = |r 3| = |r 4| = 5, |s| = |sr | = |sr 2| = |sr 3| = |sr 4| = 2.
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Dihedral groups

Problem

Use the generators and relations above to show that if x is any element of D2n which is

not a power of r , then rx = xr−1.

Solution

Every element x ∈ D2n is of the form x = s i r j where i = 0, 1 and 0 ≤ j < n. If i = 0 we

have that x is a power of r ; thus x = sr j for some 0 ≤ j < n. Hence

rx = rsr j = sr−1r j = sr j r−1 = xr−1.

Problem

Let x and y be elements of order 2 in any group G . Prove that if t = xy then tx = xt−1

(so that if n = |xy | <∞ then x , t satisfy the same relations in G as s, r do in D2n).

Solution

We have xt−1 = x(xy)−1 = xy−1x−1 = xyx = tx since x and y have order 2.
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Dihedral groups

Problem

Find the order of the cyclic subgroup of D2n generated by r .

Solution

We know that |r | = n. Thus, the elements of subgroup A are precisely 1, r , r 2, . . . , rn−1;

thus |A| = n
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Homomorphisms and Isomorphisms

Definition

Let (G , ?) and (H, �) be groups. A map φ : G → H such that φ(x ? y) = φ(x) � φ(y) for

all x , y ∈ G , is called a homomorphism.

Definition

The map ϕ : G → H is called an isomorphism and G and H are said to be isomorphic or

of the same isomorphism type, written G ∼= H, if

1 ϕ is a homomorphism (i.e.,ϕ(xy) = ϕ(x)ϕ(y)), and

2 ϕ is a bijection.
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of the same isomorphism type, written G ∼= H, if

1 ϕ is a homomorphism (i.e.,ϕ(xy) = ϕ(x)ϕ(y)), and

2 ϕ is a bijection.
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Homomorphisms and Isomorphisms

Let G and H be groups. Solve the following problems.

Problem

Let ϕ : G → H be a homomorphism. (a) Prove that ϕ(xn) = ϕ(x)n for all n ∈ Z+. (b)

Do part (a) for n = −1 and deduce that ϕ(xn) = ϕ(x)n for all n ∈ Z.

Solution

(a) We proceed by induction on n. For the base case, ϕ(x1) = ϕ(x) = ϕ(x)1. Suppose

the statement holds for some n ∈ Z+; then

ϕ(xn+1) = ϕ(xnx) = ϕ(xn)ϕ(x) = ϕ(x)nϕ(x) = ϕ(x)n+1, so the statement holds for

n + 1. By induction, ϕ(xn) = ϕ(x)nforalln ∈ Z+.

(b)First, note that ϕ(x) = ϕ(1G · x) = ϕ(1G ) · ϕ(x). By right cancellation, we have

ϕ(1G ) = 1H . Thus ϕ(x0) = ϕ(x)0. Moreover, ϕ(x)ϕ(x−1) = ϕ(xx−1) = ϕ(1) = 1; thus

by the uniqueness of inverses, ϕ(x−1) = ϕ(x)−1. Now suppose n is a negative integer.

Then ϕ(xn) = ϕ((x−n)−1) = ϕ(x−n)−1 = (ϕ(x)−n)−1 = ϕ(x)n. Thus ϕ(xn) = ϕ(x)n for

all x ∈ G and n ∈ Z.
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Homomorphisms and Isomorphisms

Problem

If ϕ : G → H is an isomorphism, prove that G is abelian if and only if H is abelian.

Solution

Let ϕ : G → H be a group isomorphism.

(⇒) Suppose G is abelian, and let h1, h2 ∈ H. Since ϕ is surjective, there exist g1, g2 ∈ G

such that ϕ(g1) = h1 and ϕ(g2) = h2. Now we have

h1h2 = ϕ(g1)ϕ(g2) = ϕ(g1g2) = ϕ(g2g1) = ϕ(g2)ϕ(g1) = h2h1. Thus h1 and h2

commute; since h1, h2 ∈ H were arbitrary, H is abelian.

(⇐) Suppose H is abelian, and let g1, g2 ∈ G . Then we have

ϕ(g1g2) = ϕ(g1)ϕ(g2) = ϕ(g2)ϕ(g1) = ϕ(g2g1). Since ϕ is injective, we have

g1g2 = g2g1. Since g1, g2 ∈ G were arbitrary, G is abelian.
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Homomorphisms and Isomorphisms

Problem

Prove that the additive groups R and Q are not isomorphic.

Solution

We know that no bijection Q→ R exists, so no such isomorphism exists.

Problem

Define a map π : R2 → R by π((x , y)) = x . Prove that π is a homomorphism and find

the kernel of π.

Solution

To show that π is a homomorphism, let (x1, y1), (x2, y2) ∈ R2. Then

π((x1, y1) · (x2, y2)) = π((x1x2, y1y2)) = x1x2 = π((x1, y1)) · π((x2, y2)).

Now we claim that ker π = 0× R.(⊆)If (x , y) ∈ ker π then we have x = π((x , y)) = 0.

Thus (x , y) ∈ 0× R.(⊇) If (x , y) ∈ 0× R, we have x = 0 and thus π((x , y)) = 0. Hence

(x , y) ∈ ker π.
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Homomorphisms and Isomorphisms

Problem

Let G be any group. Prove that the map from G to itself defined by g 7→ g−1 is a

homomorphism if and only if G is abelian.

Solution

(⇒) Suppose G is abelian. Then ϕ(ab) = (ab)−1 = b−1a−1 = a−1b−1 = ϕ(a)ϕ(b), so

that ϕ is a homomorphism.

(⇐) Suppose ϕ is a homomorphism, and let a, b ∈ G . Then

ab = (b−1a−1)−1 = ϕ(b−1a−1) = ϕ(b−1)ϕ(a−1) = (b−1)−1(a−1)−1 = ba, so that G is

abelian.

Problem

Let G be any group. Prove that the map from G to itself defined by g 7→ g 2 is a

homomorphism if and only if G is abelian.

Solution

(⇐) Suppose G is abelian. Then ϕ(ab) = abab = a2b2 = ϕ(a)ϕ(b), so that ϕ is a

homomorphism.

(⇒) Suppose ϕ is a homomorphism. Then we have abab = ϕ(ab) = ϕ(a)ϕ(b) = aabb,

so that abab = aabb. Left multiplying by a−1 and right multiplying byb−1, we see that

ab = ba. Thus G is abelian.

G. Kalaimurugan (Assstant Professor) ALGEBRA -I March 9, 2020 13 / 37



Homomorphisms and Isomorphisms

Problem

Let G be any group. Prove that the map from G to itself defined by g 7→ g−1 is a

homomorphism if and only if G is abelian.

Solution

(⇒) Suppose G is abelian. Then ϕ(ab) = (ab)−1 = b−1a−1 = a−1b−1 = ϕ(a)ϕ(b), so

that ϕ is a homomorphism.

(⇐) Suppose ϕ is a homomorphism, and let a, b ∈ G . Then

ab = (b−1a−1)−1 = ϕ(b−1a−1) = ϕ(b−1)ϕ(a−1) = (b−1)−1(a−1)−1 = ba, so that G is

abelian.

Problem

Let G be any group. Prove that the map from G to itself defined by g 7→ g 2 is a

homomorphism if and only if G is abelian.

Solution

(⇐) Suppose G is abelian. Then ϕ(ab) = abab = a2b2 = ϕ(a)ϕ(b), so that ϕ is a

homomorphism.

(⇒) Suppose ϕ is a homomorphism. Then we have abab = ϕ(ab) = ϕ(a)ϕ(b) = aabb,

so that abab = aabb. Left multiplying by a−1 and right multiplying byb−1, we see that

ab = ba. Thus G is abelian.

G. Kalaimurugan (Assstant Professor) ALGEBRA -I March 9, 2020 13 / 37



Homomorphisms and Isomorphisms

Problem

Let G be any group. Prove that the map from G to itself defined by g 7→ g−1 is a

homomorphism if and only if G is abelian.

Solution

(⇒) Suppose G is abelian. Then ϕ(ab) = (ab)−1 = b−1a−1 = a−1b−1 = ϕ(a)ϕ(b), so

that ϕ is a homomorphism.

(⇐) Suppose ϕ is a homomorphism, and let a, b ∈ G . Then

ab = (b−1a−1)−1 = ϕ(b−1a−1) = ϕ(b−1)ϕ(a−1) = (b−1)−1(a−1)−1 = ba, so that G is

abelian.

Problem

Let G be any group. Prove that the map from G to itself defined by g 7→ g 2 is a

homomorphism if and only if G is abelian.

Solution

(⇐) Suppose G is abelian. Then ϕ(ab) = abab = a2b2 = ϕ(a)ϕ(b), so that ϕ is a

homomorphism.

(⇒) Suppose ϕ is a homomorphism. Then we have abab = ϕ(ab) = ϕ(a)ϕ(b) = aabb,

so that abab = aabb. Left multiplying by a−1 and right multiplying byb−1, we see that

ab = ba. Thus G is abelian.

G. Kalaimurugan (Assstant Professor) ALGEBRA -I March 9, 2020 13 / 37



Homomorphisms and Isomorphisms

Problem

Let G be any group. Prove that the map from G to itself defined by g 7→ g−1 is a

homomorphism if and only if G is abelian.

Solution

(⇒) Suppose G is abelian. Then ϕ(ab) = (ab)−1 = b−1a−1 = a−1b−1 = ϕ(a)ϕ(b), so

that ϕ is a homomorphism.

(⇐) Suppose ϕ is a homomorphism, and let a, b ∈ G . Then

ab = (b−1a−1)−1 = ϕ(b−1a−1) = ϕ(b−1)ϕ(a−1) = (b−1)−1(a−1)−1 = ba, so that G is

abelian.

Problem

Let G be any group. Prove that the map from G to itself defined by g 7→ g 2 is a

homomorphism if and only if G is abelian.

Solution

(⇐) Suppose G is abelian. Then ϕ(ab) = abab = a2b2 = ϕ(a)ϕ(b), so that ϕ is a

homomorphism.

(⇒) Suppose ϕ is a homomorphism. Then we have abab = ϕ(ab) = ϕ(a)ϕ(b) = aabb,

so that abab = aabb. Left multiplying by a−1 and right multiplying byb−1, we see that

ab = ba. Thus G is abelian.

G. Kalaimurugan (Assstant Professor) ALGEBRA -I March 9, 2020 13 / 37



Group Actions

Definition

A group action of a group G on a set A is a map from G × A to A (written as g · a, for

all g ∈ G and a ∈ A) satisfying the following properties:

1 g1 · (g2 · a) = (g1g2) · a, for all g1, g2 ∈ G , a ∈ A, and

2 1 · a = a, for all a ∈ A.

Definition

Let the group G act on the set A. For each fixed g ∈ G we get a map σg . defined

σg : A→ A by σg (a) = g · a. Then,

1 for each fixed g ∈ G , σg is a permutation of A, and

2 the map from G to SA defined by g 7→ σg is a homomorphism. This homomorphism

called the permutation representation associated to the given action.
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Group Actions

Example

Let ga = a, for all g ∈ G , a ∈ A. Properties 1 and 2 of a group action follow immediately.

This action is called the trivial action and G is said to act trivially on A. Note that

distinct elements of G induce the same permutation on A (in this case the identity

permutation). The associated permutation representation G → SA is the trivial

homomorphism which maps every element of G to the identity. If G acts on a set B and

distinct elements of G induce distinct permutations of B, the action is said to be faithful.

A faithful action is therefore one in which the associated permutation representation is

injective. The kernel of the action of G on B is defined to be {g ∈ G |gb = b for all

b ∈ B}, namely the elements of G which fix all the elements of B. For the trivial action,

the kernel of the action is all of G and this action is not faithful when |G | > 1.

Problem

Show that the additive group Z acts on itself by z · a = z + a for all z , a ∈ Z

Solution

Let a ∈ Z. We have 0 · a = 0 + a = a. Now let z1, z2 ∈ Z. Then

z1 · (z2 · a) = z1 · (z2 + a) = z1 + (z2 + a) = (z1 + z2) + a = (z1 + z2) · a. Thus left

addition by group elements is in fact a group action.
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Group Actions

Problem

Show that the additive group R acts on the x , y plane RxR by r · (x , y) = (x + ry , y).

Solution

Let (x , y) ∈ R× R. We have 0 · (x , y) = (x + 0y , y) = (x , y).Nowletr1, r2 ∈ R. Then

r1 · (r2 · (x , y)) = r1 · (x + r2y , y) = (x + r2y + r1y , y) = (x + (r1 + r2)y , y) = (r1 + r2) · (x , y)

Problem

Let G be a group acting on a set A and fix some a ∈ A. Show that the following sets are

subgroups of G (a) the kernel of the action, (b) {g ∈ G |ga = a} - this subgroup is called

the stabilizer of a in G .
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Group Actions

Solution

we need to show that the identity belongs to the set and that each is closed under

multiplication and inversion. (a) Note that 1 ∈ Ksince1 · a = aforalla ∈ A. Now suppose

k1, k2 ∈ K , andleta ∈ A. Then (k1k2) · a = k1 · (k2 · a) = k1 · a = a, so that k1k2 ∈ K . Now
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Thus K is a subgroup of G .
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s−1 · a = s−1 · (s · a) = (s−1s) · a = a, so that s−1 ∈ S . Thus S is a subgroup of G .
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Subgroups

Definition

Let G be a group. The subset H of G is a subgroup of G if H is nonempty and H is

closed under products and inverses (i.e., x , y ∈ H implies x−1 ∈ H and xy ∈ H). If H is a

subgroup of G we shall write H ≤ G .

Example

1 Z ≤ Q and Q ≤ R with the operation of addition.

2 Any group G has two subgroups: H = G and H = {1}; the latter is called the trivial

subgroup and will henceforth be denoted by 1 .

3 If G = D2n is the dihedral group of order 2n, let H be {1, r , r 2, ..., rn−1}, the set of all

rotations in G . Since the product of two rotations is again a rotation and the inverse

of a rotation is also a rotation it follows that H is a subgroup of D2n of order n.
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Subgroups

Proposition

(The Subgroup Criterion) A subset H of a group G is a subgroup if and only if

1 H 6= ∅, and

2 for all x , y ∈ H, xy−1 ∈ H

Furthermore, if H is finite, then it suffices to check that H is nonempty and closed under

multiplication.

Problem

Show that the following subsets of the dihedral group D8 are actually subgroups: (a)

{1, r 2, s, sr 2}, (b) {1, r 2, sr , sr 3}
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Subgroups

Solution

(a) We have

r 2r 2 = 1, r 2s = sr 2, r 2sr 2 = s, sr 2 = sr 2, ss = 1, ssr 2 = r 2, sr 2r 2 = s, sr 2s = r 2, and

sr 2sr 2 = 1, so that this set is closed under multiplication. Moreover, (r 2)−1 = r 2, s−1 = s,

and (sr 2)−1 = sr 2, so this set is closed under inversion. Thus it is a subgroup.

(b) We have

r 2r 2 = 1, r 2sr = sr 3, r 2sr 3 = sr , srr 2 = sr 3, srsr = 1, srsr 3 = r 2, sr 3r 2 = sr , sr 3sr = r 2, and

sr 3sr 3 = 1, so that this set is closed under multiplication. Moreover,

(r 2)−1 = r 2, (sr)−1 = sr , and (sr 3)−1 = sr 3, so this set is closed under inversion. Thus it

is a subgroup.

Problem

Prove that G cannot have a subgroup H with |H| = n − 1, where n = |G | > 2.

Solution

Under these conditions, there exists a nonidentity element x ∈ H and an element y /∈ H.

Consider the product xy . If xy ∈ H, then since x−1 ∈ H and H is a subgroup, y ∈ H, a

contradiction. If xy /∈ H, then we have xy = y . Thus x = 1, a contradiction. Thus no

such subgroup exists.
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Subgroups

Problem

Let H and K be subgroups of G . Prove that H ∪ K is a subgroup if and only if either

H ⊆ K or K ⊆ H.

Solution

The (⇐) direction is clear. To see (⇒), suppose that H ∪ K is a subgroup of G and that

H 6⊆ KandK 6⊆ H; that is, there exist x ∈ H with x /∈ K and y ∈ K with y /∈ H. Now we

have xy ∈ H ∪ K , so that either xy ∈ H or xy ∈ K . If xy ∈ H, then we have

x−1xy = y ∈ H, a contradiction. Similarly, if xy ∈ K , we have x ∈ K , a contradiction.

Then it must be the case that either H ⊆ K or K ⊆ H.
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Subgroups

Problem

Let G be a group. (a) Prove that if H and K are subgroups of G , then so is H ∩ K .

(b) Prove that if {Hi}i∈I is a family of subgroups of G then so is
⋂

i∈I Hi .(or)Prove that

the intersection of an arbitrary nonempty collection of subgroups of G is again a

subgroup of G (do not assume the collection is countable)

Solution

(a) Note that H ∩ K is not empty since 1 ∈ H ∩ K . Now suppose x , y ∈ H ∩ K . Then

since H and K are subgroups, we have xy−1 ∈ H and xy−1 ∈ K by the subgroup

criterion; thus xy−1 ∈ H ∩ K . By the subgroup criterion, H ∩ K is a subgroup of G .

(b) Note that
⋂

i∈I Hi is not empty since 1 ∈ Hi for each i ∈ I . Now let x , y ∈
⋂

i∈I Hi .

Then x , y ∈ Hi for each i ∈ I , and by the subgroup criterion, xy−1 ∈ Hi for each i ∈ I .

Thus xy−1 ∈
⋂

i∈I Hi . By the subgroup criterion,
⋂

i∈I Hi is a subgroup of G .
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Centralizers and Normalizer, Stabilizers and Kernels

We now introduce some important families of subgroups of an arbitrary group G which in

particular provide many examples of subgroups. Let A be any nonempty subset of G .

Definition

Define CG (A) = {g ∈ G |gag−1 = a for all a ∈ A}. This subset of G is called the

centralizer of A in G . Since gag−1 = a if and only if ga = ag ,CG (A) is the set of

elements of G which commute with every element of A.

Definition

Define Z(G) = {g ∈ G |gx = xg for all x ∈ G}, the set of elements commuting with all

the elements of G . This subset of G is called the center of G .
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Centralizers and Normalizer, Stabilizers and Kernels

Definition

Define gAg−1 = {gag−1|a ∈ A}. Define the normalizer of A in G to be the set

NG (A) = {g ∈ G |gAg−1 = A}.

Example

If G is abelian then all the elements of G commute, so Z(G) = G . Similarly,

CG (A) = NG (A) = G for any subset A of G since gag−1 = gg−1a = a for every g ∈ G

and every a ∈ A.

Definition

if G is a group acting on a set S and s is some fixed element of S , the stabilizer of s in G

is the set Gs = {g ∈ G |g · s = s}.
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Centralizers and Normalizer, Stabilizers and Kernels

Problem

Prove that CG (A) = {g ∈ G |g−1ag = a for all a ∈ A}.

Solution

By definition, CG (A) = {g ∈ G | gag−1 = a for all a ∈ A}.

(⊆) If g ∈ CG (A), then gag−1 = a for all a ∈ A. Left multiplying by g−1 and right

multiplying by g , we have that a = g−1ag for all a ∈ A.

(⊇) If g ∈ G such that g−1ag = a for all a ∈ A, then left multiplying by g and right

multiplying by g−1 we have that a = gag−1 for all a ∈ A.

Problem

Prove that CG (Z(G)) = G and deduce that NG (Z(G)) = G

Solution

First we show that CG (Z(G)) = G .

(⊆) is clear. (⊇) Suppose g ∈ G . Then by definition, for all a ∈ Z(G), we have ga = ag .

That is, for all a ∈ Z(G), we have a = gag−1. Thus g ∈ CG (Z(G)).

Since CG (Z(G)) ≤ NG (Z(G)), we have NG (Z(G)) = G

G. Kalaimurugan (Assstant Professor) ALGEBRA -I March 9, 2020 25 / 37



Centralizers and Normalizer, Stabilizers and Kernels

Problem

Prove that CG (A) = {g ∈ G |g−1ag = a for all a ∈ A}.

Solution

By definition, CG (A) = {g ∈ G | gag−1 = a for all a ∈ A}.

(⊆) If g ∈ CG (A), then gag−1 = a for all a ∈ A. Left multiplying by g−1 and right

multiplying by g , we have that a = g−1ag for all a ∈ A.

(⊇) If g ∈ G such that g−1ag = a for all a ∈ A, then left multiplying by g and right

multiplying by g−1 we have that a = gag−1 for all a ∈ A.

Problem

Prove that CG (Z(G)) = G and deduce that NG (Z(G)) = G

Solution

First we show that CG (Z(G)) = G .

(⊆) is clear. (⊇) Suppose g ∈ G . Then by definition, for all a ∈ Z(G), we have ga = ag .

That is, for all a ∈ Z(G), we have a = gag−1. Thus g ∈ CG (Z(G)).

Since CG (Z(G)) ≤ NG (Z(G)), we have NG (Z(G)) = G

G. Kalaimurugan (Assstant Professor) ALGEBRA -I March 9, 2020 25 / 37



Centralizers and Normalizer, Stabilizers and Kernels

Problem

Prove that CG (A) = {g ∈ G |g−1ag = a for all a ∈ A}.

Solution

By definition, CG (A) = {g ∈ G | gag−1 = a for all a ∈ A}.

(⊆) If g ∈ CG (A), then gag−1 = a for all a ∈ A. Left multiplying by g−1 and right

multiplying by g , we have that a = g−1ag for all a ∈ A.

(⊇) If g ∈ G such that g−1ag = a for all a ∈ A, then left multiplying by g and right

multiplying by g−1 we have that a = gag−1 for all a ∈ A.

Problem

Prove that CG (Z(G)) = G and deduce that NG (Z(G)) = G

Solution

First we show that CG (Z(G)) = G .

(⊆) is clear. (⊇) Suppose g ∈ G . Then by definition, for all a ∈ Z(G), we have ga = ag .

That is, for all a ∈ Z(G), we have a = gag−1. Thus g ∈ CG (Z(G)).

Since CG (Z(G)) ≤ NG (Z(G)), we have NG (Z(G)) = G

G. Kalaimurugan (Assstant Professor) ALGEBRA -I March 9, 2020 25 / 37



Centralizers and Normalizer, Stabilizers and Kernels

Problem

Prove that CG (A) = {g ∈ G |g−1ag = a for all a ∈ A}.

Solution

By definition, CG (A) = {g ∈ G | gag−1 = a for all a ∈ A}.

(⊆) If g ∈ CG (A), then gag−1 = a for all a ∈ A. Left multiplying by g−1 and right

multiplying by g , we have that a = g−1ag for all a ∈ A.

(⊇) If g ∈ G such that g−1ag = a for all a ∈ A, then left multiplying by g and right

multiplying by g−1 we have that a = gag−1 for all a ∈ A.

Problem

Prove that CG (Z(G)) = G and deduce that NG (Z(G)) = G

Solution

First we show that CG (Z(G)) = G .

(⊆) is clear. (⊇) Suppose g ∈ G . Then by definition, for all a ∈ Z(G), we have ga = ag .

That is, for all a ∈ Z(G), we have a = gag−1. Thus g ∈ CG (Z(G)).

Since CG (Z(G)) ≤ NG (Z(G)), we have NG (Z(G)) = GG. Kalaimurugan (Assstant Professor) ALGEBRA -I March 9, 2020 25 / 37



Centralizers and Normalizer, Stabilizers and Kernels

Problem

Prove that if A and B are subsets of G with A ⊆ B then CG (B) is a subgroup of CG (A).

Solution

Let x ∈ CG (B). Then for all b ∈ B, xbx−1 = b. Since A ⊆ B, for all a ∈ A we have

xax−1 = a, so that x ∈ CG (A). Thus CG (B) ⊆ CG (A), and hence CG (B) ≤ CG (A)

Problem

Let H be a subgroup of order 2 in G . Show that NG (H) = CG (H). Deduce that if

NG (H) = G , then H ≤ Z(G).

Solution

Say H = {1, h}.

We already know that CG (H) ⊆ NG (H). Now suppose x ∈ NG (H); then {x1x−1,

xhx−1} = {1, h}. Clearly, then, we have xhx−1 = h. Thus x ∈ CG (H). Hence

NG (H) = CG (H).

If NG (H) = G , we have CG (H) = G . Then ghg−1 = h for all h ∈ H, so that gh = hg for

all h ∈ H, and thus H ≤ Z(G).
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Prove that if A and B are subsets of G with A ⊆ B then CG (B) is a subgroup of CG (A).

Solution

Let x ∈ CG (B). Then for all b ∈ B, xbx−1 = b. Since A ⊆ B, for all a ∈ A we have

xax−1 = a, so that x ∈ CG (A). Thus CG (B) ⊆ CG (A), and hence CG (B) ≤ CG (A)
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Centralizers and Normalizer, Stabilizers and Kernels

Problem

Prove that Z(G) ≤ NG (A) for any subset A of G .

Solution

If A = ∅, the statement is vacuously true since NG (A) = G . If A is not empty, let

x ∈ Z(G). Then xax−1 = a for all a ∈ A, so that xAx−1 = A. Hence x ∈ NG (A).
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Cyclic groups and Cyclic subgroups of a group

Definition

A group H is cyclic if H can be generated by a single element, i.e. , there is some element

x ∈ H such that H = {xn|n ∈ Z} (where as usual the operation is multiplication).

Remark

In additive notation H is cyclic if H = {nx |n ∈ Z}. In both cases we shall write H = 〈x〉

and say H is generated by x (and x is a generator of H). A cyclic group may have more

than one generator. For example, if H = 〈x〉, then also H = 〈x−1〉.
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Cyclic groups and Cyclic subgroups of a group

Proposition

If H = 〈x〉, then |H| = |x |(where if one side of this equality is infinite, so is the other).

More specifically (1) if |H| = n <∞, then xn = 1 and 1, x , x2, . . . , xn−1 are all the

distinct elements of H, and (2) if |H| =∞, then xn 6= 1 for all n 6= 0 and xa 6= xb for all

a 6= b in Z.

Proposition

Let G be an arbitrary group, x ∈ G and let m, n ∈ Z. If xn = 1 and xm = 1 , then

xd = 1, where d = (m, n). In particular, if xm = 1 for some m ∈ Z, then |x | divides m .

Theorem

Let H = 〈x〉 be a cyclic group. Then every subgroup H is cyclic. More precisely, if

K ≤ H, then either K = {1} or K = 〈xd〉 , where d is the smallest positive integer such

that xd ∈ K .
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Cyclic groups and Cyclic subgroups of a group

Problem

Find all cyclic subgroups of D8 . Find a proper subgroup of D8 which is not cyclic.

Solution

We have the following.

(1) 〈1〉 = {1} (2)〈r〉 = {1, r , r 2, r 3} (3)〈r 2〉 = {1, r 2} (4)〈r 3〉 = {1, r , r 2, r 3}

(5)〈s〉 = {1, s} (6)〈sr〉 = {1, sr} (7)〈sr 2〉 = {1, sr 2} (8)〈sr 3〉 = {1, sr 3}. We know that

{1, r 2, s, r 2s} is a subgroup of D8, but is not on the above list, hence is not cyclic.

Problem

Let p be a prime and let n be a positive integer. Show that if x is an element of the

group G such that xPn
= 1 then |x | = pm for some m ≤ n.

G. Kalaimurugan (Assstant Professor) ALGEBRA -I March 9, 2020 30 / 37



Cyclic groups and Cyclic subgroups of a group

Problem

Find all cyclic subgroups of D8 . Find a proper subgroup of D8 which is not cyclic.

Solution

We have the following.

(1) 〈1〉 = {1} (2)〈r〉 = {1, r , r 2, r 3} (3)〈r 2〉 = {1, r 2} (4)〈r 3〉 = {1, r , r 2, r 3}

(5)〈s〉 = {1, s} (6)〈sr〉 = {1, sr} (7)〈sr 2〉 = {1, sr 2} (8)〈sr 3〉 = {1, sr 3}. We know that

{1, r 2, s, r 2s} is a subgroup of D8, but is not on the above list, hence is not cyclic.

Problem

Let p be a prime and let n be a positive integer. Show that if x is an element of the

group G such that xPn
= 1 then |x | = pm for some m ≤ n.

G. Kalaimurugan (Assstant Professor) ALGEBRA -I March 9, 2020 30 / 37



Cyclic groups and Cyclic subgroups of a group

Problem

Find all cyclic subgroups of D8 . Find a proper subgroup of D8 which is not cyclic.

Solution

We have the following.

(1) 〈1〉 = {1} (2)〈r〉 = {1, r , r 2, r 3} (3)〈r 2〉 = {1, r 2} (4)〈r 3〉 = {1, r , r 2, r 3}

(5)〈s〉 = {1, s} (6)〈sr〉 = {1, sr} (7)〈sr 2〉 = {1, sr 2} (8)〈sr 3〉 = {1, sr 3}. We know that

{1, r 2, s, r 2s} is a subgroup of D8, but is not on the above list, hence is not cyclic.

Problem

Let p be a prime and let n be a positive integer. Show that if x is an element of the

group G such that xPn
= 1 then |x | = pm for some m ≤ n.

G. Kalaimurugan (Assstant Professor) ALGEBRA -I March 9, 2020 30 / 37



Cyclic groups and Cyclic subgroups of a group

Solution

We prove a lemma.

Lemma: Let G be a group and x ∈ G an element of finite order, say, |x | = n. If xm = 1,

then n divides m. Proof: Suppose to the contrary that n does not divide m; then by the

Division Algorithm there exist integers q and r such that 0 < r < |n| and m = qn + r .

Then we have 1 = xm = xqn+r = (xn)q + x r = x r . But recall that by definition n is the

least positive integer with this property, so we have a contradiction. Thus n divides m.

Problem

Let G be a finite group and let x ∈ G .

(1) Prove that if g ∈ NG (〈x〉) then gxg−1 = xa for some integer a.

(2) Show conversely that if gxg−1 = xa for some integer a, then g ∈ NG (〈x〉). [Hint:

Show first that gxkg−1 = (gkg−1)k = xak for any integer k, so that g〈x〉g−1 ≤ 〈x〉. If x

has order n, show that the elements gx ig−1 are distinct for i ∈ {0, 1, . . . , n − 1}, so that

|g〈x〉g−1| = |〈x〉| = n and conclude that g〈x〉g−1 = 〈x〉.]
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Cyclic groups and Cyclic subgroups of a group

Solution

(1) Let g ∈ NG (〈x〉). By definition, we have gxg−1 ∈ 〈x〉, so that gxg−1 = xa for some

integer a.

(2) We prove some lemmas. Lemma 1: Let G be a group and let x , g ∈ G . Then for all

integers k, gxkg−1 = (gxg−1)k . Proof: First we prove the conclusion for nonnegative k

by induction on k. If k = 0, we have gx0g−1 = gg−1 = 1 = (gxg−1)0. Now suppose the

conclusion holds for some k ≥ 0; then

gxk+1g−1 = gxxkg−1 = gxg−1gxkg−1 = gxg−1(gxg−1)k = (gxg−1)k+1. By induction,

the conclusion holds for all nonnegative k. Now suppose k < 0; then

gxkg−1 = (gx−kg−1)−1 = (gxg−1)−k−1

= (gxg−1)k . Thus the conclusion holds for all

integers k. �

Lemma 2: Let G be a group and let x , g ∈ G such that gxg−1 = xa for some integer a.

Then g〈x〉g−1 is a subgroup of 〈x〉. Proof: Let gxkg−1 ∈ g〈x〉g−1; by Lemma 1 we

have gxkg−1 = (gxg−1)k = xak , so that gxg−1 ∈ 〈x〉. Thus g〈x〉g−1 ⊆ 〈x〉. Now let

gxbg−1, gxcg−1 ∈ g〈x〉g−1. Then

gxbg−1(gxcg−1)−1 = gxbg−1gx−cg−1 = gxb−cg−1 ∈ g〈x〉g−1. By the Subgroup

Criterion, then, g〈x〉g−1 ≤ 〈x〉. �
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Cyclic groups and Cyclic subgroups of a group

Lemma 3:

Let G be a group and let x , g ∈ G such that gxg−1 = xa for some integer a and such

that |x | = n, n ∈ Z. Then gx ig−1aredistinctfori ∈ {0, 1, . . . , n − 1}. Proof: Choose

distinct i , j ∈ {0, 1, . . . , n − 1}. By a previous exercise, x i 6= x j . Suppose now that

gx ig−1 = gx jg−1; by cancellation we have x i = x j , a contradiction. Thus the gx ig−1 are

distinct. �

Now to the main result; suppose gxg−1 = xa for some integer a. Since G has finite order,

|x | = n for some n. By Lemma 2, g〈x〉g−1 ≤ 〈x〉, and by Lemma 3 we have

|g〈x〉g−1| = |〈x〉|. Since G is finite, then, we have g〈x〉g−1 = 〈x〉. Thus g ∈ NG (〈x〉).
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Subgroups generated by subsets of a group

Proposition

If A is any nonempty collection of subgroups of G , then the intersection of all members

of A is also a subgroup of G .

Proof.

This is an easy application of the subgroup criterion (see [?] ). Let K = ∩H∈AH. Since

each H ∈ A is a subgroup, 1 ∈ H , so 1 ∈ K , that is, K 6= ∅. If a, b ∈ K , then a, b ∈ H,

for all H ∈ A. Since each H is a group, ab−1 ∈ H, for all H, hence ab−1 ∈ K . Then

K ≤ G .

Definition

If A is any subset of the group G define 〈A〉 = ∩A⊆H,H≤G . This is called the subgroup of

G generated by A.
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Subgroups generated by subsets of a group

Problem

Let G be a group. Prove that if H ≤ G is a subgroup then 〈H〉 = H.

Solution

That H ⊆ 〈H〉 is clear. Now suppose x ∈ 〈H〉. We can write x as a finite product

h1h2 · · · hn of elements of H; since H is a subgroup, then, x ∈ H.

Problem

Let G be a group, with A ⊆ B ⊆ G . Prove that 〈A〉 ≤ 〈B〉. Give an example where

A ⊆ B with A 6= B but 〈A〉 = 〈B〉.

Solution

Let A = {H ≤ G | A ⊆ H} and B = {H ≤ G | B ⊆ H}. Since A ⊆ B, we have A ⊆ H

whenever B ⊆ H; thus B ⊆ A. By definition, we have 〈A〉 = ∩A and 〈B〉 = ∩B. We

know from set theory that ∩A ⊆ ∩B, so that 〈A〉 ⊆ 〈B〉.

Now since 〈A〉 is itself a subgroup of G , we have 〈A〉 ≤ 〈B〉.

Now suppose G = 〈x〉 is cyclic. Then {x} ( G , but we have 〈x〉 = 〈G〉.
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Subgroups generated by subsets of a group

Problem

Let G be a group and let H ≤ G be an abelian subgroup. Show that 〈H,Z(G)〉 is

abelian. Give an explicit example of an abelian subgroup H of a group G such that

〈H,CG (H)〉 is not abelian

Solution

We begin with a lemma.

Lemma: Let G be a group, H ≤ G an abelian subgroup. Then every element of

〈H,Z(G)〉 is of the form hz for some h ∈ H and z ∈ Z(G). Proof: Recall that every

element of 〈H,Z(G)〉 can be written as a (finite) word a1a2 · · · ak for some integer k and

ai ∈ H ∪ Z(G). We proceed by induction on k, the length of a word in H ∪ Z(G). If

k = 1, we have x = a1; if a1 ∈ H we have x = a1 · 1, and if a1 ∈ Z(G) we have

x = 1 · a1. Now suppose all words of length k can be written in the form hz , and let

x = a1a2 · · · ak+1 be a word of length k + 1. By the induction hypothesis we have

a2 · · · ak+1 = hz for some h ∈ H and z ∈ Z(G). Now if a1 ∈ H, we have x = (a1h) · z ,

and if a1 ∈ Z(G), then x = h · (a1z). By induction, every element of 〈H,Z(G)〉 is of the

form hz for some h ∈ H and z ∈ Z(G).�

Now let x , y ∈ 〈H,Z(G)〉. By the lemma we have x = h1z1 and y = h2z2 for some

h1, h2 ∈ H and z1, z2 ∈ Z(G). Then

xy = h1z1h2z2 = z1h1z2h2 = z1z2h1h2 = z2z1h2h1 = z2h2z1h1 = yx . Hence 〈H,Z(G)〉 is

abelian.

Now to the counterexample; for any group G ,Z(G) is an abelian subgroup. By a

previous exercise, we know also that CG (Z(G)) = G . Thus if G is any nonabelian group,

〈Z(G),CG (Z(G))〉 = G is not abelian.
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〈H,CG (H)〉 is not abelian

Solution

We begin with a lemma.

Lemma: Let G be a group, H ≤ G an abelian subgroup. Then every element of

〈H,Z(G)〉 is of the form hz for some h ∈ H and z ∈ Z(G). Proof: Recall that every

element of 〈H,Z(G)〉 can be written as a (finite) word a1a2 · · · ak for some integer k and

ai ∈ H ∪ Z(G). We proceed by induction on k, the length of a word in H ∪ Z(G). If

k = 1, we have x = a1; if a1 ∈ H we have x = a1 · 1, and if a1 ∈ Z(G) we have

x = 1 · a1. Now suppose all words of length k can be written in the form hz , and let

x = a1a2 · · · ak+1 be a word of length k + 1. By the induction hypothesis we have

a2 · · · ak+1 = hz for some h ∈ H and z ∈ Z(G). Now if a1 ∈ H, we have x = (a1h) · z ,

and if a1 ∈ Z(G), then x = h · (a1z). By induction, every element of 〈H,Z(G)〉 is of the

form hz for some h ∈ H and z ∈ Z(G).�

Now let x , y ∈ 〈H,Z(G)〉. By the lemma we have x = h1z1 and y = h2z2 for some

h1, h2 ∈ H and z1, z2 ∈ Z(G). Then

xy = h1z1h2z2 = z1h1z2h2 = z1z2h1h2 = z2z1h2h1 = z2h2z1h1 = yx . Hence 〈H,Z(G)〉 is

abelian.

Now to the counterexample; for any group G ,Z(G) is an abelian subgroup. By a

previous exercise, we know also that CG (Z(G)) = G . Thus if G is any nonabelian group,

〈Z(G),CG (Z(G))〉 = G is not abelian.
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Subgroups generated by subsets of a group

Problem

Let G be a group and H ≤ G . Show that H = 〈H \ {1}〉.

Solution

We have H \ {1} ⊆ 〈H \ {1}〉. If H = 1, then 〈H \ {1}〉 = 〈∅〉 = 1 = H. If H 6= 1, there

exists some nonidentity h ∈ H. So h ∈ H \ {1}, so that hh−1 = 1 ∈ 〈H \ {1}〉. Thus

H ⊆ 〈H \ {1}〉.

Now if x ∈ 〈H \ {1}〉, we can write x = a1a2 · · · an for some integer n and group elements

ai ∈ H \ {1}; since H is a subgroup, then, x ∈ H.
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